奇异值分解(Singular Value Decomposition,SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域。是很多机器学习算法的基石。本文就对SVD的原理做一个总结,并讨论在在PCA降维算法中是如何运用运用SVD的。

1. 特征值和特征向量

  特征值和特征向量的定义如下:

  Ax=λx
  其中A是一个n×n的矩阵,x是一个n维向量,则我们说λ是矩阵A的一个特征值,而x是矩阵A的特征值λ所对应的特征向量。

  求出特征值和特征向量有什么好处呢? 就是我们可以将矩阵A特征分解。如果我们求出了矩阵A的n个特征值λ1≤λ2≤...≤λn,以及这n个特征值所对应的特征向量{w1,w2,...wn},那么矩阵A就可以用下式的特征分解表示:A=WΣW−1

  其中W是这n个特征向量所张成的n×n维矩阵,而Σ为这n个特征值为主对角线的n×n维矩阵。

  一般我们会把W的这n个特征向量标准化,即满足||wi||2=1, 或者说wiTwi=1,此时W的n个特征向量为标准正交基,满足WTW=I,即WT=W−1, 也就是说W为酉矩阵。

  这样我们的特征分解表达式可以写成: A=WΣWT

  注意到要进行特征分解,矩阵A必须为方阵。那么如果A不是方阵,即行和列不相同时,我们还可以对矩阵进行分解吗?答案是可以,此时我们的SVD登场了。

2.  SVD的定义

  SVD也是对矩阵进行分解,但是和特征分解不同,SVD并不要求要分解的矩阵为方阵。假设我们的矩阵A是一个m×n的矩阵,那么我们定义矩阵A的SVD为:A=UΣVT

  其中U是一个m×m的矩阵,Σ是一个m×n的矩阵,除了主对角线上的元素以外全为0,主对角线上的每个元素都称为奇异值,V是一个n×n的矩阵。U和V都是酉矩阵,即满足UTU=I,VTV=I。下图可以很形象的看出上面SVD的定义:

  那么我们如何求出SVD分解后的U,Σ,V这三个矩阵呢?

  如果我们将A的转置和A做矩阵乘法,那么会得到n×n的一个方阵ATA。既然ATA是方阵,那么我们就可以进行特征分解,得到的特征值和特征向量满足:(ATA)viivi

  这样我们就可以得到矩阵ATA的n个特征值和对应的n个特征向量v了。将ATA的所有特征向量张成一个n×n的矩阵V,就是我们SVD公式里面的V矩阵了。一般我们将V中的每个特征向量叫做A的右奇异向量。

  如果我们将A和A的转置做矩阵乘法,那么会得到m×m的一个方阵AAT。既然AAT是方阵,那么我们就可以进行特征分解,得到的特征值和特征向量满足:(AAT)uiiui

  这样我们就可以得到矩阵AAT的m个特征值和对应的m个特征向量u了。将AAT的所有特征向量张成一个m×m的矩阵U,就是我们SVD公式里面的U矩阵了。一般我们将U中的每个特征向量叫做A的左奇异向量。

  U和V都求出来了,现在就剩下奇异值矩阵Σ没有求出了。由于Σ除了对角线上是奇异值其他位置都是0,那我们只需要求出每个奇异值σ就可以了。我们注意到:

  A=UΣV⇒ AV=UΣVTV ⇒ AV=UΣ ⇒ Aviiu⇒ σi=Avi/ui

  这样我们可以求出我们的每个奇异值,进而求出奇异值矩阵Σ。

  上面还有一个问题没有讲,就是我们说ATA的特征向量组成的就是我们SVD中的V矩阵,而AAT的特征向量组成的就是我们SVD中的U矩阵,这有什么根据吗?这个其实很容易证明,我们以V矩阵的证明为例。A=UΣVT ⇒ AT=VΣTU⇒ ATA=VΣTUTUΣVT=VΣ2VT

  上式证明使用了:UTU=I,ΣTΣ=Σ2。UTU=I,ΣTΣ=Σ2。可以看出ATA的特征向量组成的就是SVD中的V矩阵。类似的方法可以得到AAT的特征向量组成的就是SVD中的U矩阵。

  进一步我们还可以看出我们的特征值矩阵等于奇异值矩阵的平方,也就是说特征值和奇异值满足如下关系:σi=√λi

  这样也就是说,我们可以不用σi=Avi/ui来计算奇异值,也可以通过求出ATA的特征值取平方根来求奇异值。

3. SVD的一些性质

  上面几节我们对SVD的定义和计算做了详细的描述,似乎看不出我们费这么大的力气做SVD有什么好处。那么SVD有什么重要的性质值得我们注意呢?

  对于奇异值,它跟我们特征分解中的特征值类似,在奇异值矩阵中也是按照从大到小排列,而且奇异值的减少特别的快,在很多情况下,前10%甚至1%的奇异值的和就占了全部的奇异值之和的99%以上的比例。也就是说,我们也可以用最大的k个的奇异值和对应的左右奇异向量来近似描述矩阵。也就是说:Am×n=Um×mΣm×nVTn×n≈Um×kΣk×kVTk×n。其中k要比n小很多,也就是一个大的矩阵A可以用三个小的矩阵Um×kk×k,VTk×n来表示。如下图所示,现在我们的矩阵A只需要灰色的部分的三个小矩阵就可以近似描述了。

  由于这个重要的性质,SVD可以用于PCA降维,来做数据压缩和去噪。也可以用于推荐算法,将用户和喜好对应的矩阵做特征分解,进而得到隐含的用户需求来做推荐。同时也可以用于NLP中的算法,比如潜在语义索引(LSI)。下面我们就对SVD用于PCA降维做一个介绍。

4. SVD用于PCA

  在主成分分析(PCA)中,要用PCA降维,需要找到样本协方差矩阵XTX的最大的d个特征向量,然后用这最大的d个特征向量张成的矩阵来做低维投影降维。可以看出,在这个过程中需要先求出协方差矩阵XTX,当样本数多、样本特征数也多的时候,这个计算量是很大的。

  注意到我们的SVD也可以得到协方差矩阵XTX最大的d个特征向量组成的矩阵,但是SVD有个好处,有一些SVD的实现算法可以不求先求出协方差矩阵XTX,也能求出我们的右奇异矩阵V。也就是说,我们的PCA算法可以不用做特征分解,而是做SVD来完成。这个方法在样本量很大的时候很有效。实际上,scikit-learn的PCA算法的背后真正的实现就是用的SVD,而不是我们我们认为的暴力特征分解。

  另一方面,注意到PCA仅仅使用了我们SVD的右奇异矩阵,没有使用左奇异矩阵,那么左奇异矩阵有什么用呢?

  假设我们的样本是m×n的矩阵X,如果我们通过SVD找到了矩阵XXT最大的d个特征向量组成的m×d维矩阵U,则我们如果进行如下处理:X′d×n=UTd×mXm×n

  可以得到一个d×n的矩阵X‘,这个矩阵和我们原来的m×n维样本矩阵X相比,行数从m减到了k,可见对行数进行了压缩。也就是说,左奇异矩阵可以用于行数的压缩。相对的,右奇异矩阵可以用于列数即特征维度的压缩,也就是我们的PCA降维。    

5. SVD小结 

  SVD作为一个很基本的算法,在很多机器学习算法中都有它的身影,特别是在现在的大数据时代,由于SVD可以实现并行化,因此更是大展身手。SVD的原理不难,只要有基本的线性代数知识就可以理解,实现也很简单因此值得仔细的研究。当然,SVD的缺点是分解出的矩阵解释性往往不强,有点黑盒子的味道,不过这不影响它的使用。

文章内容转载自:https://www.cnblogs.com/pinard/p/6251584.html

 

奇异值分解(SVD)与在降维中的应用的更多相关文章

  1. 机器学习降维方法概括, LASSO参数缩减、主成分分析PCA、小波分析、线性判别LDA、拉普拉斯映射、深度学习SparseAutoEncoder、矩阵奇异值分解SVD、LLE局部线性嵌入、Isomap等距映射

    机器学习降维方法概括   版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/u014772862/article/details/52335970 最近 ...

  2. 降维之奇异值分解(SVD)

    看了几篇关于奇异值分解(Singular Value Decomposition,SVD)的博客,大部分都是从坐标变换(线性变换)的角度来阐述,讲了一堆坐标变换的东西,整了一大堆图,试图“通俗易懂”地 ...

  3. 奇异值分解(SVD)原理与在降维中的应用

    奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域.是 ...

  4. 【疑难杂症】奇异值分解(SVD)原理与在降维中的应用

    前言 在项目实战的特征工程中遇到了采用SVD进行降维,具体SVD是什么,怎么用,原理是什么都没有细说,因此特开一篇,记录下SVD的学习笔记 参考:刘建平老师博客 https://www.cnblogs ...

  5. [机器学习笔记]奇异值分解SVD简介及其在推荐系统中的简单应用

    本文先从几何意义上对奇异值分解SVD进行简单介绍,然后分析了特征值分解与奇异值分解的区别与联系,最后用python实现将SVD应用于推荐系统. 1.SVD详解 SVD(singular value d ...

  6. 一步步教你轻松学奇异值分解SVD降维算法

    一步步教你轻松学奇异值分解SVD降维算法 (白宁超 2018年10月24日09:04:56 ) 摘要:奇异值分解(singular value decomposition)是线性代数中一种重要的矩阵分 ...

  7. 机器学习实战(Machine Learning in Action)学习笔记————10.奇异值分解(SVD)原理、基于协同过滤的推荐引擎、数据降维

    关键字:SVD.奇异值分解.降维.基于协同过滤的推荐引擎作者:米仓山下时间:2018-11-3机器学习实战(Machine Learning in Action,@author: Peter Harr ...

  8. SVD及其在推荐系统中的作用

    本文先从几何意义上对奇异值分解SVD进行简单介绍,然后分析了特征值分解与奇异值分解的区别与联系,最后用python实现将SVD应用于推荐系统. 1.SVD详解 SVD(singular value d ...

  9. 奇异值分解(SVD)原理详解及推导(转载)

    转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有 ...

随机推荐

  1. elasticsearch 安装 windows linux macOS

    导读 在上一章节我们介绍Elasticsearch基本概念,今天我们继续进行本章内容,Elasticsearch在各种环境下安装,下面将逐一讲解在各种操作系统或不同安装在不同环境中注意事项. 安装 E ...

  2. [openjudge-搜索]湖的深度

    题目描述 描述 一个湖用 R x C (1 ≤ R ≤ 50; 1 ≤ C ≤ 50) 的网格表示.格点上的非负整数 D_rc (0 ≤ D_rc ≤ 1,000,000)表示该位置的深度.整数0表示 ...

  3. Python基础(三)文件操作

    [对文件进行循环操作] fw = open('nhy','w') for line in fw: print('line:',line)   #直接循环文件对象,每次循环的时候就是取每一行的数据 fw ...

  4. php 固定红包 + 随机红包算法

    <?php /** * 随机红包+固定红包算法[策略模式] * copyright (c) 2016 http://blog.csdn.net/CleverCode */ //配置传输数据DTO ...

  5. 11个简单的Java性能调优技巧,傻瓜都能学会!

    大多数开发人员理所当然地以为性能优化很复杂,需要大量的经验和知识.好吧,不能说这是完全错误的.优化应用程序以获得最佳性能不是一件容易的事情.但是,这并不意味着如果你不具备这些知识,就不能做任何事情. ...

  6. 剑指offer(24)二叉树中和为某一值的路径

    题目描述 输入一颗二叉树和一个整数,打印出二叉树中结点值的和为输入整数的所有路径.路径定义为从树的根结点开始往下一直到叶结点所经过的结点形成一条路径 题目分析 这题基本上一看就知道应该深度遍历整个树, ...

  7. 【C++】10.18日的C++笔记

    使用memset初始化一个类会导致类中的指针和虚函数表出现问题.相关链接 使用memset(a,1,sizeof(a))初始化a数组不会达到预期的效果,因为memset会把每个字节赋值为1就会变成16 ...

  8. Learning-MySQL【6】:视图、触发器、存储过程、函数、流程控制

    一.视图 视图就是通过查询得到一张虚拟表,然后保存下来,下次用的直接使用即可.使用视图我们可以把查询过程中的临时表摘出来,用视图去实现,这样以后再想操作该临时表的数据时就无需重写复杂的 SQL 语句了 ...

  9. 【HNOI 2018】排列

    Problem Description 给定 \(n\) 个整数 \(a_1, a_2, \ldots , a_n(0 \le a_i \le n)\),以及 \(n\) 个整数 \(w_1, w_2 ...

  10. EF Core

    一个事务中    先在数据库查出一条数据进行修改      然后在进行查询  他会直接在内存中找到这条数据  不会再数据库查询了 EF Core的 linq语句中可以使用C#方法或函数   在EF6或 ...