叶子的染色

题目描述

给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根、内部结点和叶子均可)着以黑色或白色。你的着色方案应该保证根结点到每个叶子的简单路径上都至少包含一个有色结点(哪怕是这个叶子本身)。 对于每个叶结点u,定义c[u]为从根结点从U的简单路径上最后一个有色结点的颜色。给出每个c[u]的值,设计着色方案,使得着色结点的个数尽量少。

  • 做了半天发现想多了
  • 一个神奇的结论:无论把哪个非叶子节点当根,答案都是一样的

    证明:现在根是\(x\),有个儿子节点为\(y\),\(xy\)颜色相同的话肯定只有一个有贡献,颜色不同那更没什么影响了。
  • 直接树形dp就行了,\(dp[i][0/1]\)表示\(i\)号点及子树中最近一个点要什么颜色的最小染色方案
  • \(dp[u][j]=min(dp[v][j]-1,dp[v][1-j] )+1\)
// luogu-judger-enable-o2
#include<bits/stdc++.h>
using namespace std;
typedef int sign;
typedef long long ll;
#define For(i,a,b) for(register sign i=(sign)a;i<=(sign)b;++i)
#define Fordown(i,a,b) for(register sign i=(sign)a;i>=(sign)b;--i)
const int N=1e4+5;
bool cmax(sign &a,sign b){return (a<b)?a=b,1:0;}
bool cmin(sign &a,sign b){return (a>b)?a=b,1:0;}
template<typename T>inline T read()
{
T f=1,ans=0;
char ch=getchar();
while(!isdigit(ch)&&ch!='-')ch=getchar();
if(ch=='-')f=-1,ch=getchar();
while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch-'0'),ch=getchar();
return ans*f;
}
template<typename T>inline void write(T x,char y)
{
if(x==0)
{
putchar('0');putchar(y);
return;
}
if(x<0)
{
putchar('-');
x=-x;
}
static char wr[20];
int top=0;
for(;x;x/=10)wr[++top]=x%10+'0';
while(top)putchar(wr[top--]);
putchar(y);
}
void file()
{
#ifndef ONLINE_JUDGE
freopen("3155.in","r",stdin);
freopen("3155.out","w",stdout);
#endif
}
struct edge
{
int v,nex;
}e[N<<1];
int head[N],tt;
void add(int x,int y)
{
e[++tt]=(edge){y,head[x]};head[x]=tt;
}
int m,n,cl[N],in[N];
void input()
{
int x,y;
m=read<int>();n=read<int>();
For(i,1,n)cl[i]=read<int>();
For(i,1,m-1)
{
x=read<int>();y=read<int>();
add(x,y),add(y,x);
++in[x],++in[y];
}
}
#define rg register
int dp[N][3];
const int inf=0x3f3f3f3f;
void dfs(int u,int pre)
{
if(in[u]==1)
{
dp[u][cl[u]]=1;dp[u][cl[u]^1]=inf;
return;
}
int v;
dp[u][0]=dp[u][1]=1;
for(rg int i=head[u];i;i=e[i].nex)
{
v=e[i].v;
if(v==pre)continue;
dfs(v,u);
For(j,0,1)dp[u][j]+=min(dp[v][j]-1,dp[v][j^1]);
}
}
void work()
{
dfs(n+1,0);
write(min(dp[n+1][0],dp[n+1][1]),'\n');
}
int main()
{
file();
input();
work();
return 0;
}

CQOI2009叶子的染色的更多相关文章

  1. BZOJ 1304: [CQOI2009]叶子的染色

    1304: [CQOI2009]叶子的染色 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 566  Solved: 358[Submit][Statu ...

  2. 洛谷 P3155 [CQOI2009]叶子的染色 解题报告

    P3155 [CQOI2009]叶子的染色 题目描述 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到 ...

  3. 【BZOJ1304】[CQOI2009]叶子的染色(动态规划)

    [BZOJ1304][CQOI2009]叶子的染色(动态规划) 题面 BZOJ 洛谷 题解 很简单. 设\(f[i][0/1/2]\)表示以\(i\)为根的子树中,还有颜色为\(0/1/2\)(\(2 ...

  4. P3155 [CQOI2009]叶子的染色

    P3155 [CQOI2009]叶子的染色 题目描述 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到 ...

  5. BZOJ1304 CQOI2009 叶子的染色 【树形DP】

    BZOJ1304 CQOI2009 叶子的染色 Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方 ...

  6. BZOJ_1304_[CQOI2009]叶子的染色_树形DP

    BZOJ_1304_[CQOI2009]叶子的染色_树形DP Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白 ...

  7. bzoj千题计划233:bzoj 1304: [CQOI2009]叶子的染色

    http://www.lydsy.com/JudgeOnline/problem.php?id=1304 结论1:根节点一定染色 如果根节点没有染色,选择其子节点的一个颜色,那么所有这个颜色的子节点都 ...

  8. 【bzoj1304】[CQOI2009]叶子的染色 树形dp

    题目描述 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到每个叶子的简单路径上都至少包含一个有色结点( ...

  9. luogu3155 [CQOI2009]叶子的染色

    题目大意 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到每个叶子的简单路径上都至少包含一个有色结点( ...

随机推荐

  1. Redis缓存的使用

    首先需要去Redis官网下载Redis的安装包 要在eclipse中使用Redis还需要两个jar包,需要的自行查找或者联系我 运行Redis需要开启Redis的服务端,也就是下载的安装包中的“red ...

  2. 常见 HTTP/FTP/WebSocket 错误代码大全 - 转

    HTTP 1xx消息 这一类型的状态码,代表请求已被接受,需要继续处理.这类响应是临时响应,只包含状态行和某些可选的响应头信息,并以空行结束.由于HTTP/1.0协议中没有定义任何1xx状态码,所以除 ...

  3. svg画弧

    http://www.pindari.com/svg-arc.html https://jsfiddle.net/8robssa0/ http://jsbin.com/giyotacuxu/edit? ...

  4. odoo订餐系统之类型设计

    这次开发的模块是订餐的类型设计,比如大荤 小荤 蔬菜 米饭 等基本数据.1.设计model类,很简单就一个字段: class MyLunchProductionCategory(osv.Model): ...

  5. .net core实践系列之短信服务-Sikiro.SMS.Api服务的实现

    前言 上篇<.net core实践系列之短信服务-架构设计>介绍了我对短信服务的架构设计,同时针对场景解析了我的设计理念.本篇继续讲解Api服务的实现过程. 源码地址:https://gi ...

  6. 【变态需求】bootstrapTable列排序-选择正序倒序不排序

    产品经理:那个table排序能不能点击后弹个选项选择正序倒序不排序? -- 那个是bootstrapTable的插件!不支持!改不了!! 注意:数据上假的,效果看http请求参数进行脑补 这是boot ...

  7. J-query extend()方法

    1.如果没有冲突参数会弥在后面. 2.参数如果和前面的参数存在相同的名称,那么后面的会覆盖前面的参数值.

  8. C#_获取路径

    一.获取当前文件的路径 1.  System.Diagnostics.Process.GetCurrentProcess().MainModule.FileName  获取模块的完整路径,包括文件名. ...

  9. Linux下部署Samba服务环境的操作记录

    关于Linux和Windows系统之间的文件传输,很多人选择使用FTP,相对较安全,但是有时还是会出现一些问题,比如上传文件时,文件名莫名出现乱码,文件大小改变等问题.相比较来说,使用Samba作为文 ...

  10. 个人阅读作业Week5

    一.总结体会 团队项目已经进行了很多周,我们团队从刚开始的基础薄弱到现在的大家都可以运用Android来编写程序,共同完成一个app的开发使用. 刚开始做团队项目之时,我们团队就开了一个会,确定了以后 ...