叶子的染色

题目描述

给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根、内部结点和叶子均可)着以黑色或白色。你的着色方案应该保证根结点到每个叶子的简单路径上都至少包含一个有色结点(哪怕是这个叶子本身)。 对于每个叶结点u,定义c[u]为从根结点从U的简单路径上最后一个有色结点的颜色。给出每个c[u]的值,设计着色方案,使得着色结点的个数尽量少。

  • 做了半天发现想多了
  • 一个神奇的结论:无论把哪个非叶子节点当根,答案都是一样的

    证明:现在根是\(x\),有个儿子节点为\(y\),\(xy\)颜色相同的话肯定只有一个有贡献,颜色不同那更没什么影响了。
  • 直接树形dp就行了,\(dp[i][0/1]\)表示\(i\)号点及子树中最近一个点要什么颜色的最小染色方案
  • \(dp[u][j]=min(dp[v][j]-1,dp[v][1-j] )+1\)
// luogu-judger-enable-o2
#include<bits/stdc++.h>
using namespace std;
typedef int sign;
typedef long long ll;
#define For(i,a,b) for(register sign i=(sign)a;i<=(sign)b;++i)
#define Fordown(i,a,b) for(register sign i=(sign)a;i>=(sign)b;--i)
const int N=1e4+5;
bool cmax(sign &a,sign b){return (a<b)?a=b,1:0;}
bool cmin(sign &a,sign b){return (a>b)?a=b,1:0;}
template<typename T>inline T read()
{
T f=1,ans=0;
char ch=getchar();
while(!isdigit(ch)&&ch!='-')ch=getchar();
if(ch=='-')f=-1,ch=getchar();
while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch-'0'),ch=getchar();
return ans*f;
}
template<typename T>inline void write(T x,char y)
{
if(x==0)
{
putchar('0');putchar(y);
return;
}
if(x<0)
{
putchar('-');
x=-x;
}
static char wr[20];
int top=0;
for(;x;x/=10)wr[++top]=x%10+'0';
while(top)putchar(wr[top--]);
putchar(y);
}
void file()
{
#ifndef ONLINE_JUDGE
freopen("3155.in","r",stdin);
freopen("3155.out","w",stdout);
#endif
}
struct edge
{
int v,nex;
}e[N<<1];
int head[N],tt;
void add(int x,int y)
{
e[++tt]=(edge){y,head[x]};head[x]=tt;
}
int m,n,cl[N],in[N];
void input()
{
int x,y;
m=read<int>();n=read<int>();
For(i,1,n)cl[i]=read<int>();
For(i,1,m-1)
{
x=read<int>();y=read<int>();
add(x,y),add(y,x);
++in[x],++in[y];
}
}
#define rg register
int dp[N][3];
const int inf=0x3f3f3f3f;
void dfs(int u,int pre)
{
if(in[u]==1)
{
dp[u][cl[u]]=1;dp[u][cl[u]^1]=inf;
return;
}
int v;
dp[u][0]=dp[u][1]=1;
for(rg int i=head[u];i;i=e[i].nex)
{
v=e[i].v;
if(v==pre)continue;
dfs(v,u);
For(j,0,1)dp[u][j]+=min(dp[v][j]-1,dp[v][j^1]);
}
}
void work()
{
dfs(n+1,0);
write(min(dp[n+1][0],dp[n+1][1]),'\n');
}
int main()
{
file();
input();
work();
return 0;
}

CQOI2009叶子的染色的更多相关文章

  1. BZOJ 1304: [CQOI2009]叶子的染色

    1304: [CQOI2009]叶子的染色 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 566  Solved: 358[Submit][Statu ...

  2. 洛谷 P3155 [CQOI2009]叶子的染色 解题报告

    P3155 [CQOI2009]叶子的染色 题目描述 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到 ...

  3. 【BZOJ1304】[CQOI2009]叶子的染色(动态规划)

    [BZOJ1304][CQOI2009]叶子的染色(动态规划) 题面 BZOJ 洛谷 题解 很简单. 设\(f[i][0/1/2]\)表示以\(i\)为根的子树中,还有颜色为\(0/1/2\)(\(2 ...

  4. P3155 [CQOI2009]叶子的染色

    P3155 [CQOI2009]叶子的染色 题目描述 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到 ...

  5. BZOJ1304 CQOI2009 叶子的染色 【树形DP】

    BZOJ1304 CQOI2009 叶子的染色 Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方 ...

  6. BZOJ_1304_[CQOI2009]叶子的染色_树形DP

    BZOJ_1304_[CQOI2009]叶子的染色_树形DP Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白 ...

  7. bzoj千题计划233:bzoj 1304: [CQOI2009]叶子的染色

    http://www.lydsy.com/JudgeOnline/problem.php?id=1304 结论1:根节点一定染色 如果根节点没有染色,选择其子节点的一个颜色,那么所有这个颜色的子节点都 ...

  8. 【bzoj1304】[CQOI2009]叶子的染色 树形dp

    题目描述 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到每个叶子的简单路径上都至少包含一个有色结点( ...

  9. luogu3155 [CQOI2009]叶子的染色

    题目大意 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到每个叶子的简单路径上都至少包含一个有色结点( ...

随机推荐

  1. Luogu2183 礼物 ExLucas、CRT

    传送门 证明自己学过exLucas 这题计算的是本质不相同的排列数量,不难得到答案是\(\frac{n!}{\prod\limits_{i=1}^m w_i! \times (n - \sum\lim ...

  2. Luogu4547 THUWC2017 随机二分图 概率、状压DP

    传送门 考虑如果只有$0$组边要怎么做.因为$N \leq 15$,考虑状压$DP$.设$f_i$表示当前的匹配情况为$i$时的概率($i$中$2^0$到$2^{N-1}$表示左半边的匹配情况,$2^ ...

  3. linux 硬盘挂载

    #df -h(查看分区情况及数据盘名称) # mkdir /data(如果没有data目录就创建,否则此步跳过) # umount /home(卸载硬盘已挂载的home目录) # mount /dev ...

  4. Ionic app升级插件开发

    终于走到了写插件的这个地方了,插件的过程: 1.安装plugman插件,管理我们的程序 npm install -g plugman 2.创建插件项目appUpgrade,cd 到你的目标目录下,执行 ...

  5. Qt实现软件自动更新的一种简单方法

    前言 最近在学习Qt开发上位机,想实现一个检查更新的功能,网上搜索了一大圈,发现实现过程都很复杂,关键是代码看不懂,所以就自己开发一种简单的方式来实现.实现效果如下: 点击"检查更新&quo ...

  6. BodeAbp概述

    BodeAbp框架基于github开源框架ASP.NET Boilerplate,abp项目地址:https://github.com/aspnetboilerplate/aspnetboilerpl ...

  7. WCF的练习。

    最近稍微又学习了下WCF,并做了一些联系.觉得很有收获,把东西都上传到git上了.然后在这里做一个链接导航. 无废话WCF入门教程一[什么是WCF] 无废话WCF入门教程二[WCF应用的通信过程] 无 ...

  8. HAOI2016 找相同字符 后缀自动机

    两个串,考虑一建一跑.枚举模式串的位置\(i\),考虑每次统计以\(i\)结尾的所有符合要求的串.在后缀自动机上走时记录当前匹配长度\(curlen\),则当前节点的贡献是\((curlen-len[ ...

  9. BugPhobia开发篇章:Beta阶段第IX次Scrum Meeting

    0x01 :Scrum Meeting基本摘要 Beta阶段第九次Scrum Meeting 敏捷开发起始时间 2015/12/25 00:00 A.M. 敏捷开发终止时间 2015/12/28 23 ...

  10. 《Linux内核分析》 期中总结

    Linux内核分析 期中总结 20135307 张嘉琪 一.Linux内核分析课程总结 学习笔记汇总 第一节 计算机是如何工作的 第二节 操作系统是如何工作的 第三节 构造一个简单的Linux系统Me ...