Codeforces Round #440 (Div. 2) A,B,C
1 second
256 megabytes
standard input
standard output
You are given two lists of non-zero digits.
Let's call an integer pretty if its (base 10) representation has at least one digit from the first list and at least one digit from the second list. What is the smallest positive pretty integer?
The first line contains two integers n and m (1 ≤ n, m ≤ 9) — the lengths of the first and the second lists, respectively.
The second line contains n distinct digits a1, a2, ..., an (1 ≤ ai ≤ 9) — the elements of the first list.
The third line contains m distinct digits b1, b2, ..., bm (1 ≤ bi ≤ 9) — the elements of the second list.
Print the smallest pretty integer.
2 3
4 2
5 7 6
25
8 8
1 2 3 4 5 6 7 8
8 7 6 5 4 3 2 1
1
In the first example 25, 46, 24567 are pretty, as well as many other integers. The smallest among them is 25. 42 and 24 are not pretty because they don't have digits from the second list.
In the second example all integers that have at least one digit different from 9 are pretty. It's obvious that the smallest among them is 1, because it's the smallest positive integer.
水题
#include<bits/stdc++.h>
using namespace std;
const int MAX = ;
int main()
{
int n,m,a[MAX],b[MAX],ans=,i,j;
cin>>n>>m;
for(i=;i<=n;i++) cin>>a[i];
for(i=;i<=m;i++) cin>>b[i];
sort(a+,a++n);
sort(b+,b++m);
for(i=;i<=n;i++)
for(j=;j<=m;j++)
{
if(a[i]==b[j])ans=min(ans,a[i]);
}
if(ans==)
{
int u=max(a[],b[]),v=min(a[],b[]);
ans=u+v*;
}
cout<<ans<<endl;
}
1 second
256 megabytes
standard input
standard output
You are given an array a1, a2, ..., an consisting of n integers, and an integer k. You have to split the array into exactly k non-empty subsegments. You'll then compute the minimum integer on each subsegment, and take the maximum integer over the k obtained minimums. What is the maximum possible integer you can get?
Definitions of subsegment and array splitting are given in notes.
The first line contains two integers n and k (1 ≤ k ≤ n ≤ 105) — the size of the array a and the number of subsegments you have to split the array to.
The second line contains n integers a1, a2, ..., an ( - 109 ≤ ai ≤ 109).
Print single integer — the maximum possible integer you can get if you split the array into k non-empty subsegments and take maximum of minimums on the subsegments.
5 2
1 2 3 4 5
5
5 1
-4 -5 -3 -2 -1
-5
A subsegment [l, r] (l ≤ r) of array a is the sequence al, al + 1, ..., ar.
Splitting of array a of n elements into k subsegments [l1, r1], [l2, r2], ..., [lk, rk] (l1 = 1, rk = n, li = ri - 1 + 1 for all i > 1) is k sequences (al1, ..., ar1), ..., (alk, ..., ark).
In the first example you should split the array into subsegments [1, 4] and [5, 5] that results in sequences (1, 2, 3, 4) and (5). The minimums are min(1, 2, 3, 4) = 1 and min(5) = 5. The resulting maximum is max(1, 5) = 5. It is obvious that you can't reach greater result.
In the second example the only option you have is to split the array into one subsegment [1, 5], that results in one sequence ( - 4, - 5, - 3, - 2, - 1). The only minimum is min( - 4, - 5, - 3, - 2, - 1) = - 5. The resulting maximum is - 5.
水题.
1. 当n=1的时候绝对是取这一串序列的最小值.
2. 当n=2是会分成两个区间,但不管怎么分是最左边与最右边的数一定是不同区间的,可以推一下,如果要取每个区间最小值中最大的,如序列3 4 1 3 2 / 代表分区间,会有四种分法:3 / 4 1 3 2 3 4 / 1 3 2 3 4 1 / 3 2 3 4 1 3 / 2 ,如果a[1]>a[0],那么最小的还是a[0], 没有变化,如果a[1]<a[0],区间最小值变小,无意义,,从后往前推也是这个道理,所以当n=2的情况下,只需要比较最左边与最右边就可以了.
3.当n=3时,可以直接取到最大的数。
#include<bits/stdc++.h>
using namespace std;
int main()
{
long long m,n,maxx=-,minn=,i,x,a[];
cin>>m>>n;
if(n==){
for(i=;i<m;i++){
cin>>x;
if(x<minn)
minn=x;
}
cout<<minn<<endl;
}
else if(n==){
for(i=;i<m;i++){
cin>>a[i];
}
cout<<max(a[],a[m-])<<endl;
}
else {
for(i=;i<m;i++){
cin>>x;
if(x>maxx)
maxx = x;
}
cout<<maxx<<endl;
}
return ;
}
2 seconds
256 megabytes
standard input
standard output
You are given several queries. In the i-th query you are given a single positive integer ni. You are to represent ni as a sum of maximum possible number of composite summands and print this maximum number, or print -1, if there are no such splittings.
An integer greater than 1 is composite, if it is not prime, i.e. if it has positive divisors not equal to 1 and the integer itself.
The first line contains single integer q (1 ≤ q ≤ 105) — the number of queries.
q lines follow. The (i + 1)-th line contains single integer ni (1 ≤ ni ≤ 109) — the i-th query.
For each query print the maximum possible number of summands in a valid splitting to composite summands, or -1, if there are no such splittings.
1
12
3
2
6
8
1
2
3
1
2
3
-1
-1
-1
12 = 4 + 4 + 4 = 4 + 8 = 6 + 6 = 12, but the first splitting has the maximum possible number of summands.
8 = 4 + 4, 6 can't be split into several composite summands.
1, 2, 3 are less than any composite number, so they do not have valid splittings.
题目很简单,一开始没看懂题意,题意是求一个数n最多能分解成多少个非素数
优先考虑4,让其对4取模,这样就只有四种情况
余数为0时,正好整除必为多个4组成,这样就是最优解
余数为1时,4+4+1 = 9,退一位,n/4-1,余数1与两个 4凑成9,非素数
余数为2时,4+2=6,不变,4与余数2凑成6,非素数
余数为3时,4+4+4+3=6+9,退一位,(满足你>=15)
综上只要满足>=15,公式就可以通用
#include<bits/stdc++.h>
using namespace std; int main()
{
int n,m,ans,flag;
cin>>n;
while(n--)
{
scanf("%d",&m);
if(m==)printf("-1\n");
else
{
flag=m%;
if(flag==)ans=m/;
else if(flag==)ans=m/-;
else if(flag==)ans=m/;
else ans=m/-;
if(ans<=)
ans=-;
printf("%d\n",ans);
}
}
}
Codeforces Round #440 (Div. 2) A,B,C的更多相关文章
- Codeforces Round #440 (Div. 2)【A、B、C、E】
Codeforces Round #440 (Div. 2) codeforces 870 A. Search for Pretty Integers(水题) 题意:给两个数组,求一个最小的数包含两个 ...
- Codeforces Round #440 (Div. 2, based on Technocup 2018 Elimination Round 2)
A. Search for Pretty Integers 题目链接:http://codeforces.com/contest/872/problem/A 题目意思:题目很简单,找到一个数,组成这个 ...
- Codeforces Round #440 (Div. 2, based on Technocup 2018 Elimination Round 2) D. Something with XOR Queries
地址:http://codeforces.com/contest/872/problem/D 题目: D. Something with XOR Queries time limit per test ...
- [日常] Codeforces Round #440 Div.2 大力翻车实况
上次打了一发ABC然后大力翻车...上午考试又停电+Unrated令人非常滑稽...下午终于到了CF比赛... 赛前大力安利了一发然后拉了老白/ $ljm$ / $wcx$ 一起打, 然后搞了个 TI ...
- Codeforces Round #440 Div. 1
A:显然应该尽量拆成4.如果是奇数,先拆一个9出来即可. #include<iostream> #include<cstdio> #include<cmath> # ...
- Codeforces Round #440 (Div. 1, based on Technocup 2018 Elimination Round 2) C - Points, Lines and Ready-made Titles
C - Points, Lines and Ready-made Titles 把行列看成是图上的点, 一个点(x, y)就相当于x行 向 y列建立一条边, 我们能得出如果一个联通块是一棵树方案数是2 ...
- Codeforces Round #440 (Div. 2, based on Technocup 2018 Elimination Round 2) C. Maximum splitting
地址: 题目: C. Maximum splitting time limit per test 2 seconds memory limit per test 256 megabytes input ...
- ACM-ICPC (10/15) Codeforces Round #440 (Div. 2, based on Technocup 2018 Elimination Round 2)
A. Search for Pretty Integers You are given two lists of non-zero digits. Let's call an integer pret ...
- 【Codeforces Round #440 (Div. 2) C】 Maximum splitting
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 肯定用尽量多的4最好. 然后对4取模的结果 为0,1,2,3分类讨论即可 [代码] #include <bits/stdc++ ...
随机推荐
- 自建mvc5项目里几个类图
AccoutController.cs AccountViewModels.cs IdentityModel.cs
- JVM规范系列第5章:加载、链接与初始化
加载是根据特定名称查找类或接口类型的二进制表示(Binary Representation),并由此二进制表示创建类或接口的过程. 加载,就是指去寻找类或接口的过程. 链接是为了让类或接口可以被 Ja ...
- Django后端彻底解决跨域问题
最近在接一个前后端分离的项目,后端使用的django-restframework,前端使用的Vue.后端跑起来后,发现前端在访问后端API时出了了跨域的问题. 类似如下报错: 关于跨域问题,之前这篇文 ...
- 【精】【入门篇】js正则表达式
前言 最近有了点时间,就回头看了一下<学习正则表达式>这本书.怎么说呢,这本书适合从零开始学习正则表达式或者有一点基础但是想要加强这方面能力的读者.这本书的风格是“实践出真知”,使用归纳方 ...
- LVM : 简介
在对磁盘分区的大小进行规划时,往往不能确定这个分区要使用的空间的大小.而使用 fdisk.gdisk 等工具对磁盘分区后,每个分区的大小就固定了.如果分区设置的过大,就白白浪费了磁盘空间:如果分区设置 ...
- CAD2020下载安装AutoCAD2020中文版下载地址+安装教程
AutoCAD2020中文版为目前最新软件版本,我第一时间拿到软件进行安装测试,确保软件正常安装且各项功能正常可以使用,立刻拿出来分享,想用最新版本的话,抓紧下载使用吧: 我把我用的安装包贡献给你下载 ...
- SpringMVC环境搭建——HelloWorld
1.新建Maven Web 工程: 2.添加相关的依赖包(Spring MVC.tomcat插件等),具体的pom.xml文件如下 <project xmlns="http://mav ...
- Daily Scrumming* 2015.12.19(Day 11)
一.团队scrum meeting照片 二.成员工作总结 姓名 任务ID 迁入记录 江昊 任务1090 https://github.com/buaaclubs-team/temp-front/com ...
- 《Linux内核设计与实现》读书笔记 3
第三章 进程管理 3.1进程 概念: 进程:处于执行期的程序.但不仅局限于程序,还包含其他资源(打开的文件,挂起的信号,内核内部数据,处理器状态,一个或多个具有内催音社的内存地址空间及一个或多个执行线 ...
- 四则运算安卓版ver.mk3
在原有的基础上做了些许改动以及添加了一点小功能,以下是代码: package com.example.add; import java.io.File; import com.example.add. ...