A. Search for Pretty Integers
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

You are given two lists of non-zero digits.

Let's call an integer pretty if its (base 10) representation has at least one digit from the first list and at least one digit from the second list. What is the smallest positive pretty integer?

Input

The first line contains two integers n and m (1 ≤ n, m ≤ 9) — the lengths of the first and the second lists, respectively.

The second line contains n distinct digits a1, a2, ..., an (1 ≤ ai ≤ 9) — the elements of the first list.

The third line contains m distinct digits b1, b2, ..., bm (1 ≤ bi ≤ 9) — the elements of the second list.

Output

Print the smallest pretty integer.

Examples
input
2 3
4 2
5 7 6
output
25
input
8 8
1 2 3 4 5 6 7 8
8 7 6 5 4 3 2 1
output
1
Note

In the first example 25, 46, 24567 are pretty, as well as many other integers. The smallest among them is 25. 42 and 24 are not pretty because they don't have digits from the second list.

In the second example all integers that have at least one digit different from 9 are pretty. It's obvious that the smallest among them is 1, because it's the smallest positive integer.

水题

#include<bits/stdc++.h>
using namespace std;
const int MAX = ;
int main()
{
int n,m,a[MAX],b[MAX],ans=,i,j;
cin>>n>>m;
for(i=;i<=n;i++) cin>>a[i];
for(i=;i<=m;i++) cin>>b[i];
sort(a+,a++n);
sort(b+,b++m);
for(i=;i<=n;i++)
for(j=;j<=m;j++)
{
if(a[i]==b[j])ans=min(ans,a[i]);
}
if(ans==)
{
int u=max(a[],b[]),v=min(a[],b[]);
ans=u+v*;
}
cout<<ans<<endl;
}
B. Maximum of Maximums of Minimums
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

You are given an array a1, a2, ..., an consisting of n integers, and an integer k. You have to split the array into exactly k non-empty subsegments. You'll then compute the minimum integer on each subsegment, and take the maximum integer over the k obtained minimums. What is the maximum possible integer you can get?

Definitions of subsegment and array splitting are given in notes.

Input

The first line contains two integers n and k (1 ≤ k ≤ n ≤  105) — the size of the array a and the number of subsegments you have to split the array to.

The second line contains n integers a1,  a2,  ...,  an ( - 109  ≤  ai ≤  109).

Output

Print single integer — the maximum possible integer you can get if you split the array into k non-empty subsegments and take maximum of minimums on the subsegments.

Examples
input
5 2
1 2 3 4 5
output
5
input
5 1
-4 -5 -3 -2 -1
output
-5
Note

A subsegment [l,  r] (l ≤ r) of array a is the sequence al,  al + 1,  ...,  ar.

Splitting of array a of n elements into k subsegments [l1, r1], [l2, r2], ..., [lk, rk] (l1 = 1, rk = nli = ri - 1 + 1 for all i > 1) is k sequences (al1, ..., ar1), ..., (alk, ..., ark).

In the first example you should split the array into subsegments [1, 4] and [5, 5] that results in sequences (1, 2, 3, 4) and (5). The minimums are min(1, 2, 3, 4) = 1 and min(5) = 5. The resulting maximum is max(1, 5) = 5. It is obvious that you can't reach greater result.

In the second example the only option you have is to split the array into one subsegment [1, 5], that results in one sequence ( - 4,  - 5,  - 3,  - 2,  - 1). The only minimum is min( - 4,  - 5,  - 3,  - 2,  - 1) =  - 5. The resulting maximum is  - 5.

水题.

1. 当n=1的时候绝对是取这一串序列的最小值.

2. 当n=2是会分成两个区间,但不管怎么分是最左边与最右边的数一定是不同区间的,可以推一下,如果要取每个区间最小值中最大的,如序列3 4 1 3 2   / 代表分区间,会有四种分法:3 / 4 1 3 2    3 4 / 1 3 2   3 4 1 / 3 2    3 4 1 3 / 2  ,如果a[1]>a[0],那么最小的还是a[0], 没有变化,如果a[1]<a[0],区间最小值变小,无意义,,从后往前推也是这个道理,所以当n=2的情况下,只需要比较最左边与最右边就可以了.

3.当n=3时,可以直接取到最大的数。

#include<bits/stdc++.h>
using namespace std;
int main()
{
long long m,n,maxx=-,minn=,i,x,a[];
cin>>m>>n;
if(n==){
for(i=;i<m;i++){
cin>>x;
if(x<minn)
minn=x;
}
cout<<minn<<endl;
}
else if(n==){
for(i=;i<m;i++){
cin>>a[i];
}
cout<<max(a[],a[m-])<<endl;
}
else {
for(i=;i<m;i++){
cin>>x;
if(x>maxx)
maxx = x;
}
cout<<maxx<<endl;
}
return ;
}
C. Maximum splitting
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

You are given several queries. In the i-th query you are given a single positive integer ni. You are to represent ni as a sum of maximum possible number of composite summands and print this maximum number, or print -1, if there are no such splittings.

An integer greater than 1 is composite, if it is not prime, i.e. if it has positive divisors not equal to 1 and the integer itself.

Input

The first line contains single integer q (1 ≤ q ≤ 105) — the number of queries.

q lines follow. The (i + 1)-th line contains single integer ni (1 ≤ ni ≤ 109) — the i-th query.

Output

For each query print the maximum possible number of summands in a valid splitting to composite summands, or -1, if there are no such splittings.

Examples
input
1
12
output
3
input
2
6
8
output
1
2
input
3
1
2
3
output
-1
-1
-1
Note

12 = 4 + 4 + 4 = 4 + 8 = 6 + 6 = 12, but the first splitting has the maximum possible number of summands.

8 = 4 + 4, 6 can't be split into several composite summands.

1, 2, 3 are less than any composite number, so they do not have valid splittings.

题目很简单,一开始没看懂题意,题意是求一个数n最多能分解成多少个非素数

优先考虑4,让其对4取模,这样就只有四种情况

余数为0时,正好整除必为多个4组成,这样就是最优解

余数为1时,4+4+1 = 9,退一位,n/4-1,余数1与两个 4凑成9,非素数

余数为2时,4+2=6,不变,4与余数2凑成6,非素数

余数为3时,4+4+4+3=6+9,退一位,(满足你>=15)

综上只要满足>=15,公式就可以通用

#include<bits/stdc++.h>
using namespace std; int main()
{
int n,m,ans,flag;
cin>>n;
while(n--)
{
scanf("%d",&m);
if(m==)printf("-1\n");
else
{
flag=m%;
if(flag==)ans=m/;
else if(flag==)ans=m/-;
else if(flag==)ans=m/;
else ans=m/-;
if(ans<=)
ans=-;
printf("%d\n",ans);
}
}
}

Codeforces Round #440 (Div. 2) A,B,C的更多相关文章

  1. Codeforces Round #440 (Div. 2)【A、B、C、E】

    Codeforces Round #440 (Div. 2) codeforces 870 A. Search for Pretty Integers(水题) 题意:给两个数组,求一个最小的数包含两个 ...

  2. Codeforces Round #440 (Div. 2, based on Technocup 2018 Elimination Round 2)

    A. Search for Pretty Integers 题目链接:http://codeforces.com/contest/872/problem/A 题目意思:题目很简单,找到一个数,组成这个 ...

  3. Codeforces Round #440 (Div. 2, based on Technocup 2018 Elimination Round 2) D. Something with XOR Queries

    地址:http://codeforces.com/contest/872/problem/D 题目: D. Something with XOR Queries time limit per test ...

  4. [日常] Codeforces Round #440 Div.2 大力翻车实况

    上次打了一发ABC然后大力翻车...上午考试又停电+Unrated令人非常滑稽...下午终于到了CF比赛... 赛前大力安利了一发然后拉了老白/ $ljm$ / $wcx$ 一起打, 然后搞了个 TI ...

  5. Codeforces Round #440 Div. 1

    A:显然应该尽量拆成4.如果是奇数,先拆一个9出来即可. #include<iostream> #include<cstdio> #include<cmath> # ...

  6. Codeforces Round #440 (Div. 1, based on Technocup 2018 Elimination Round 2) C - Points, Lines and Ready-made Titles

    C - Points, Lines and Ready-made Titles 把行列看成是图上的点, 一个点(x, y)就相当于x行 向 y列建立一条边, 我们能得出如果一个联通块是一棵树方案数是2 ...

  7. Codeforces Round #440 (Div. 2, based on Technocup 2018 Elimination Round 2) C. Maximum splitting

    地址: 题目: C. Maximum splitting time limit per test 2 seconds memory limit per test 256 megabytes input ...

  8. ACM-ICPC (10/15) Codeforces Round #440 (Div. 2, based on Technocup 2018 Elimination Round 2)

    A. Search for Pretty Integers You are given two lists of non-zero digits. Let's call an integer pret ...

  9. 【Codeforces Round #440 (Div. 2) C】 Maximum splitting

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 肯定用尽量多的4最好. 然后对4取模的结果 为0,1,2,3分类讨论即可 [代码] #include <bits/stdc++ ...

随机推荐

  1. 分析网络流量Capsa笔记

    Capsa是一款网络分析仪,允许您监控网络流量,解决网络问题并分析数据包.通过提供生动的图表,通过设计良好的GUI提供丰富的统计信息和实时警报,Capsa可让IT管理员实时识别,诊断和解决有线和无线网 ...

  2. sql语句常用功能(null值转换为0)

    COALESCE(规格,' ') 或者 COALESCE(规格,0) select * from ( ) 客户,() 物料号,p4.name 内部批次,p4.outsidename 外部批次,p1.库 ...

  3. Luogu3793 由乃救爷爷 分块、ST表

    传送门 因为昨天写暴力写挂在UOJ上用快排惨遭卡常,所以今天准备写一个卡常题消遣消遣,然后时间又垫底了QAQ 这道题显然需要支持一个\(O(N)\)预处理\(O(1)\)查询的ST表,显然普通的ST表 ...

  4. Luogu4345 SHOI2015 超能粒子炮·改 Lucas、数位DP

    传送门 模数小,还是个质数,Lucas没得跑 考虑Lucas的实质.设\(a = \sum\limits_{i=0}^5 a_i 2333^i\),\(b = \sum\limits_{i=0}^5 ...

  5. Luogu4137 Rmq problem/mex 主席树

    传送门 用主席树水莫队题…… 我们对于前缀和建立主席树,对于主席树中的每一个叶子节点表示它对应的数字最后出现的位置的编号,非叶子节点求左右节点的最小值,那么对于每一次询问$l,r$就是在第$r$棵主席 ...

  6. [Oracle][OnlineREDO]数据库无法启动时的对应策略:

    [Oracle][OnlineREDO]数据库无法启动时的对应策略: 1. Start with mount. SQL> conn / as sysdba  SQL> startup mo ...

  7. C# 时间戳与DateTime互转

    #region 转换时间为unix时间戳 /// <summary> /// 转换时间为unix时间戳 /// </summary> /// <param name=&q ...

  8. CSS 字体(font)实例

    CSS 字体(font)实例CSS 字体属性定义文本的字体系列.大小.加粗.风格(如斜体)和变形(如小型大写字母).CSS 字体系列在 CSS 中,有两种不同类型的字体系列名称: 通用字体系列 - 拥 ...

  9. Flask使用Flask-SQLAlchemy操作MySQL数据库

    前言: Flask-SQLAlchemy是一个Flask扩展,简化了在Flask程序中使用SQLAlchemy的操作.SQLAlchemy是一个很强大的关系型数据库框架,支持多种数据库后台.SQLAl ...

  10. use_frameworks!和#use_frameworks!的区别、解决Swift项目中use_frameworks!冲突的问题

    use_frameworks!和#use_frameworks!的区别 转自:https://www.jianshu.com/p/0ae58a477459 1. 用cocoapods 导入swift ...