[CC-MINXOR]XOR Minimization

题目大意:

有一个长度为\(n\)的数列\(A_{1\sim n}\)。\(q\)次操作,操作包含以下两种:

  • 询问\(A_{l\sim r}\)中最小值及其出现次数;
  • 将\(A_{l\sim r}\)中每个数字异或上\(k\)。

\(n\le250,000;q\le50,000;0\le A_i,k<2^{16}\)

思路:

分块+字典树

源代码:

#include<cmath>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<algorithm>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
const int N=250000,B=500,K=1<<16;
int n,a[N],tag[B],bel[N],beg[B],end[B];
struct Node {
int val,cnt;
};
class Trie {
private:
int val[K<<1];
public:
void reset() {
memset(val,0,sizeof val);
}
void insert(const int &x) {
for(register int i=15,p=1;i>=0;i--) {
p=p<<1|((x>>i)&1);
val[p]++;
}
}
Node query(const int &x) const {
int p=1,ret=0;
for(register int i=15;i>=0;i--) {
p<<=1;
if(val[p|((x>>i)&1)]) {
p|=(x>>i)&1;
} else {
ret|=1<<i;
p|=((x>>i)&1)^1;
}
}
return (Node){ret,val[p]};
}
};
Trie t[B];
inline void rebuild(const int &k) {
t[k].reset();
for(register int i=beg[k];i<=end[k];i++) {
t[k].insert(a[i]);
}
}
inline void modify(const int &l,const int &r,const int &k) {
if(bel[l]==bel[r]) {
for(register int i=beg[bel[l]];i<=end[bel[l]];i++) {
a[i]^=tag[bel[l]];
}
tag[bel[l]]=0;
for(register int i=l;i<=r;i++) {
a[i]^=k;
}
rebuild(bel[l]);
return;
}
for(register int i=beg[bel[l]];i<=end[bel[l]];i++) {
a[i]^=tag[bel[l]];
}
tag[bel[l]]=0;
for(register int i=l;i<=end[bel[l]];i++) {
a[i]^=k;
}
rebuild(bel[l]);
for(register int i=bel[l]+1;i<bel[r];i++) {
tag[i]^=k;
}
for(register int i=beg[bel[r]];i<=end[bel[r]];i++) {
a[i]^=tag[bel[r]];
}
tag[bel[r]]=0;
for(register int i=beg[bel[r]];i<=r;i++) {
a[i]^=k;
}
rebuild(bel[r]);
}
inline Node query(const int &l,const int &r) {
Node ans=(Node){K,0};
if(bel[l]==bel[r]) {
for(register int i=l;i<=r;i++) {
if((a[i]^tag[bel[i]])<ans.val) {
ans=(Node){a[i]^tag[bel[i]],0};
}
if((a[i]^tag[bel[i]])==ans.val) {
ans.cnt++;
}
}
return ans;
}
for(register int i=l;i<=end[bel[l]];i++) {
if((a[i]^tag[bel[i]])<ans.val) {
ans=(Node){a[i]^tag[bel[i]],0};
}
if((a[i]^tag[bel[i]])==ans.val) {
ans.cnt++;
}
}
for(register int i=bel[l]+1;i<bel[r];i++) {
const Node tmp=t[i].query(tag[i]);
if(tmp.val<ans.val) {
ans=(Node){tmp.val,0};
}
if(tmp.val==ans.val) {
ans.cnt+=tmp.cnt;
}
}
for(register int i=beg[bel[r]];i<=r;i++) {
if((a[i]^tag[bel[i]])<ans.val) {
ans=(Node){a[i]^tag[bel[i]],0};
}
if((a[i]^tag[bel[i]])==ans.val) {
ans.cnt++;
}
}
return ans;
}
int main() {
n=getint();
const int q=getint(),block=sqrt(n);
for(register int i=0;i<n;i++) {
bel[i]=i/block;
a[i]=getint();
t[bel[i]].insert(a[i]);
if(i&&bel[i]!=bel[i-1]) {
beg[bel[i]]=i;
}
end[bel[i]]=i;
}
for(register int i=0;i<q;i++) {
const int opt=getint(),l=getint()-1,r=getint()-1;
if(opt==1) {
const Node ans=query(l,r);
printf("%d %d\n",ans.val,ans.cnt);
}
if(opt==2) {
modify(l,r,getint());
}
}
return 0;
}

[CC-MINXOR]XOR Minimization的更多相关文章

  1. scau 2015寒假训练

    并不是很正规的.每个人自愿参与自愿退出,马哥找题(马哥超nice么么哒). 放假第一周与放假结束前一周 2015-01-26 http://acm.hust.edu.cn/vjudge/contest ...

  2. CF&&CC百套计划2 CodeChef December Challenge 2017 Chef And Easy Xor Queries

    https://www.codechef.com/DEC17/problems/CHEFEXQ 题意: 位置i的数改为k 询问区间[1,i]内有多少个前缀的异或和为k 分块 sum[i][j] 表示第 ...

  3. BZOJ2115 [Wc2011] Xor

    Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 ...

  4. bestcoder r44 p3 hdu 5270 ZYB loves Xor II

    这是昨晚队友跟我说的题,不知道当时是什么玄幻的事件发生了,,我看成了两两相乘的XOR 纠结了好长时间间 不知道该怎么办 今天早上看了下这道题,发现是两两相加的XOR  然后就想了想昨晚的思路 发现可做 ...

  5. BZOJ 4269: 再见Xor [高斯消元 线性基]

    4269: 再见Xor Description 给定N个数,你可以在这些数中任意选一些数出来,每个数可以选任意多次,试求出你能选出的数的异或和的最大值和严格次大值. 我太愚蠢了连数组开小了以及$2^{ ...

  6. BZOJ 2115: [Wc2011] Xor [高斯消元XOR 线性基 图]

    啦啦啦 题意: N 个点M条边的边带权的无向图,求1到n一条XOR和最大的路径 感觉把学的东西都用上了.... 1到n的所有路径可以由一条1到n的简单路径异或上任意个简单环得到 证明: 如果环与路径有 ...

  7. D. Kuro and GCD and XOR and SUM

    Kuro is currently playing an educational game about numbers. The game focuses on the greatest common ...

  8. cf1088D Ehab and another another xor problem (构造)

    题意:有两数a,b,每次你可以给定c,d询问a xor c和b xor d的大小关系,最多询问62次($a,b<=2^{30}$),问a和b 考虑从高位往低位做,正在做第i位,已经知道了a和b的 ...

  9. 洛谷 P2574 XOR的艺术(线段树 区间异或 区间求和)

    To 洛谷.2574 XOR的艺术 题目描述 AKN觉得第一题太水了,不屑于写第一题,所以他又玩起了新的游戏.在游戏中,他发现,这个游戏的伤害计算有一个规律,规律如下 1. 拥有一个伤害串为长度为n的 ...

随机推荐

  1. eclipse检出SVN项目的正确步骤

    一.在工作空间新建工作目录:workspace-xf 二.在工作目录下workspace-xf 新建文件夹 tdvs ,进入该文件夹鼠标右键:SVN CheckOut  检出需要的项目 三.打开ecl ...

  2. 史上最简单的SpringCloud教程 | 第九篇: 服务链路追踪(Spring Cloud Sleuth)

    这篇文章主要讲述服务追踪组件zipkin,Spring Cloud Sleuth集成了zipkin组件. 注意情况: 该案例使用的spring-boot版本1.5.x,没使用2.0.x, 另外本文图3 ...

  3. NodeJs——router报错原因

    rout.js var http = require('http'); var url = require('url'); var router = require('./models/router. ...

  4. Senparc.Weixin微信开发(3) 自定义菜单与获取用户组

    自定义菜单 代码参考:http://www.cnblogs.com/szw/p/3750517.html 还可以使用他们官网的自定义:https://neuchar.senparc.com/User/ ...

  5. webpack学习笔记--配置总结

    从前面的配置看来选项很多,Webpack 内置了很多功能. 你不必都记住它们,只需要大概明白 Webpack 原理和核心概念去判断选项大致属于哪个大模块下,再去查详细的使用文档. 通常你可用如下经验去 ...

  6. [转] Mongoose 参考手册

    Mongoose 参考手册 标签(空格分隔): MongoDB Mongoose 是什么? 一般我们不直接用MongoDB的函数来操作MongoDB数据库 Mongose就是一套操作MongoDB数据 ...

  7. JSP中out.print()、out.println()以及out.write()的区别

    out是JSP九大内置对象之一,是JspWriter的一个对象,JspWriter继承了java.io.Writer类. out.print()和out.write() print()和println ...

  8. 【转】如何向Android模拟器打电话发短信

    转载地址:http://hi.baidu.com/jeremylai/item/420f9c9fe4881fccb62531f7 1. 启动Android Emulator, 查看标题栏找出端口.一般 ...

  9. Python_dict部分功能介绍

    字典是无序的 x.clear():清除所有元素 x.fromkeys():返回一个新的字典,使前面的key=value x.get():如果k不存在,默认返回一个值,如果存在,则返回存在的值 x.it ...

  10. Codeforces 1017F The Neutral Zone 数论

    原文链接https://www.cnblogs.com/zhouzhendong/p/CF1017F.html 题目传送门 - CF1017F 题意 假设一个数 $x$ 分解质因数后得到结果 $x=p ...