BZOJ

洛谷


求中位数除了\(sort\)还有什么方法?二分一个数\(x\),把\(<x\)的数全设成\(-1\),\(\geq x\)的数设成\(1\),判断序列和是否非负。

对于询问\((a,b,c,d)\),同样也可以二分中位数\(x\),然后把原序列对应地改为\(+1\)或\(-1\)。

此时区间\([b,c]\)中的数是必选的,求一个和\(sum\)。显然对于区间\([a,b-1]\),我们可以求一个和最大的后缀;对于区间\([c+1,d]\),可以求一个和最大的前缀。然后判断总和是否非负。

这些都可以建出线段树来维护。

显然每次二分不能重新建树。考虑刚开始时对每个\(x\)建一棵树。

假设序列中的数互不相同,每次二分的数从\(x\)变成\(x+1\)时,显然与\(x\)相比,从\(+1\)变成\(-1\)的数只有一个。也就是每次与上一次相比,只会改变一个位置。

如果序列中的数会重复,显然总复杂度也不会受影响。

所以可以对每个\(x\)建可持久化线段树,维护区间和、最大前缀后缀和即可。

复杂度\(O(n\log n+q\log^2n)\)。

对于重复的数(假设有\(c\)个位置满足\(A_i=x\)),其实不需要去重,建\(c\)棵不同的线段树即可。无论真正的中位数和\(x\)的关系如何,一定能二分到正确位置。

如果去重,注意对于每个值我们要保留最开始的那棵树(比如2 2 2,一直修改root[now]的话会是-1 -1 1,实际上可以是1 1 1 )。注意线段树范围是1~n不是1~cnt。。

去重虽然能优化二分边界,但是好像没什么实际效果(更慢了)= =

话说这就是可持久化线段树啊,为什么要叫它主席树呢


//12848kb	756ms
#include <cstdio>
#include <cctype>
#include <assert.h>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 50000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=20005; int root[N];
std::pair<int,int> A[N];
char IN[MAXIN],*SS=IN,*TT=IN;
struct Segment_Tree
{
#define ls son[x][0]
#define rs son[x][1]
#define S N*19//建树还有一个2n空间,但是不要卡着开n(2+logn)= =
int tot,Ans,son[S][2],sum[S],pre[S],suf[S];
#undef S
inline void Update(int x)
{
int l=ls, r=rs;
sum[x]=sum[l]+sum[r];
pre[x]=std::max(pre[l],sum[l]+pre[r]);
suf[x]=std::max(suf[r],sum[r]+suf[l]);
}
void Build(int &x,int l,int r)
{
x=++tot;
if(l==r) {sum[x]=pre[x]=suf[x]=1; return;}
int m=l+r>>1;
Build(ls,l,m), Build(rs,m+1,r), Update(x);
}
void Modify(int &x,int y,int l,int r,int p)
{
x=++tot;
if(l==r) {sum[x]=-1; return;}
int m=l+r>>1;
p<=m ? (rs=son[y][1],Modify(ls,son[y][0],l,m,p)) : (ls=son[y][0],Modify(rs,son[y][1],m+1,r,p));
Update(x);
}
int QuerySum(int x,int l,int r,int L,int R)
{
if(L<=l && r<=R) return sum[x];
int m=l+r>>1;
if(L<=m)
if(m<R) return QuerySum(ls,l,m,L,R)+QuerySum(rs,m+1,r,L,R);
else return QuerySum(ls,l,m,L,R);
return QuerySum(rs,m+1,r,L,R);
}
void QueryPre(int x,int l,int r,int L,int R)
{
if(L<=l && r<=R)
{
Ans=std::max(pre[x],Ans+sum[x]);
return;
}
int m=l+r>>1;
if(m<R) QueryPre(rs,m+1,r,L,R);
if(L<=m) QueryPre(ls,l,m,L,R);//max(QueryPre(lson),QuerySum(lson)+QueryPre(rson)) 这样写的复杂度是啥啊...= =
}
void QuerySuf(int x,int l,int r,int L,int R)
{
if(L<=l && r<=R)
{
Ans=std::max(suf[x],Ans+sum[x]);
return;
}
int m=l+r>>1;
if(L<=m) QuerySuf(ls,l,m,L,R);
if(m<R) QuerySuf(rs,m+1,r,L,R);
}
}T; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-48,c=gc());
return now;
}
bool Check(int x,int n,int a,int b,int c,int d)
{
int s=T.QuerySum(root[x],1,n,b,c);
if(s>=0) return 1;
if(a<b)
{
T.Ans=0, T.QuerySuf(root[x],1,n,a,b-1);//可以用同一个函数直接Query合并区间的=v= 为了常数算了= =
if((s+=T.Ans)>=0) return 1;
}
if(c<d)
{
T.Ans=0, T.QueryPre(root[x],1,n,c+1,d);
if((s+=T.Ans)>=0) return 1;
}
return 0;
} int main()
{
static int ref[N];
const int n=read();
for(int i=1; i<=n; ++i) A[i]=std::make_pair(read(),i);
std::sort(A+1,A+1+n); int cnt=1; ref[1]=A[1].first;
for(int i=2; i<=n; ++i) if(A[i].first!=A[i-1].first) ref[++cnt]=A[i].first;
T.Build(root[1],1,n), root[2]=root[1];
// for(int i=2; i<=n; ++i) T.Modify(root[i],root[i-1],1,n,A[i-1].second);
for(int i=2,now=2; i<=n; ++i)//A[n]不用管.
{
T.Modify(root[now],root[now],1,n,A[i-1].second);
if(A[i].first!=A[i-1].first) ++now, root[now]=root[now-1];//root[++now]=root[now-1] 还是不要写这种语句了=-=
}
for(int Q=read(),ans=0,q[4]; Q--; )
{
q[0]=(read()+ans)%n+1, q[1]=(read()+ans)%n+1, q[2]=(read()+ans)%n+1, q[3]=(read()+ans)%n+1;
std::sort(q,q+4);
int l=1,r=cnt,mid;
while(l<=r)
if(Check(mid=l+r>>1,n,q[0],q[1],q[2],q[3])) ans=mid, l=mid+1;
else r=mid-1;
printf("%d\n",ans=ref[ans]);
} return 0;
}

BZOJ.2653.[国家集训队]middle(可持久化线段树 二分)的更多相关文章

  1. [BZOJ 2653] middle(可持久化线段树+二分答案)

    [BZOJ 2653] middle(可持久化线段树+二分答案) 题面 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整. 给你一个长度为n的序 ...

  2. 【BZOJ-2653】middle 可持久化线段树 + 二分

    2653: middle Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1298  Solved: 734[Submit][Status][Discu ...

  3. [bzoj 2653][国家集训队]middle

    传送门 Description 一个长度为\(n\)的序列\(a\),设其排过序之后为\(b\),其中位数定义为\(b[n/2]\),其中\(a,b\)从\(0\)开始标号,除法取下整. 给你一个长度 ...

  4. [BZOJ 3123] [SDOI 2013]森林(可持久化线段树+并查集+启发式合并)

    [BZOJ 3123] [SDOI 2013]森林(可持久化线段树+启发式合并) 题面 给出一个n个节点m条边的森林,每个节点都有一个权值.有两种操作: Q x y k查询点x到点y路径上所有的权值中 ...

  5. BZOJ 2653 middle (可持久化线段树+中位数+线段树维护最大子序和)

    题意: 左端点在[a,b],右端点在[c,d],求这个线段里中位数(上取整)最大值 思路: 对数组离散化,对每一个值建中位数的可持久化线段树(有重复也没事),就是对于root[i],大于等于i的值为1 ...

  6. BZOJ 3653: 谈笑风生(DFS序+可持久化线段树)

    首先嘛,还是太弱了,想了好久QAQ 然后,这道题么,明显就是求sigma(size[x]) (x是y的儿子且层树小于k) 然后就可以发现:把前n个节点按深度建可持久化线段树,就能用前缀和维护了 其实不 ...

  7. 【bzoj2653】middle 可持久化线段树区间合并

    题目描述 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整.给你一个长度为n的序列s.回答Q个这样的询问:s的左端点在[a,b]之间,右端点在[ ...

  8. bzoj 4504: K个串 可持久化线段树+堆

    题目: Description 兔子们在玩k个串的游戏.首先,它们拿出了一个长度为n的数字序列,选出其中的一 个连续子串,然后统计其子串中所有数字之和(注意这里重复出现的数字只被统计一次). 兔子们想 ...

  9. bzoj 3514: GERALD07加强版 lct+可持久化线段树

    题目大意: N个点M条边的无向图,询问保留图中编号在[l,r]的边的时候图中的联通块个数. 题解: 这道题考试的时候没想出来 于是便爆炸了 结果今天下午拿出昨天准备的题表准备做题的时候 题表里就有这题 ...

随机推荐

  1. springboot动态多数据源切换

    application-test.properties #datasource -- mysql multiple.datasource.master.url=jdbc:mysql://localho ...

  2. 目标检测算法之YOLOv1与v2

    YOLO:You Only Look Once(只需看一眼) 基于深度学习方法的一个特点就是实现端到端的检测,相对于其他目标检测与识别方法(如Fast R-CNN)将目标识别任务分成目标区域预测和类别 ...

  3. 转: 解压Assets.car (iOS加密资源)

    今天想获取APP的资源,但是查看xxx.app文件夹里面,缺少了大部分资源.在文件夹里面发现Assets.car这个文件,发现文件很大有40多M,猜想图片资源会不会被压缩到这里面了,所以就网络上查了下 ...

  4. Quartz.NET(任务调度)与Topshelf(服务)的综合使用

    http://www.cnblogs.com/jys509/p/4628926.html http://cron.qqe2.com/ Quartz_Topshlf_Demo.7z

  5. html5和html的区别

    最近看群里聊天聊得最火热的莫过于手机网站和html5这两个词.可能有人会问,这两者有什么关系呢?随着这移动互联网快速发展的时代,尤其是4G时代已经来临的时刻,加上微软对“XP系统”不提供更新补丁.维护 ...

  6. [转] JavaScript 之 ArrayBuffer

    JS里的ArrayBuffer 还记得某个晚上在做 canvas 像素级操作,发现存储像素的数据格式并不是Array类型,而是ArrayBuffer,心想这是什么鬼?后来查了一些资料,发现自己这半年来 ...

  7. noip斗地主

    题解: 5分钟看题 25分钟码完 然后调了一下 样例1s??? 好吧我把只出一张牌当成决策了.. 判断了一下前面没有出牌再考虑这个决策(是不是傻逼??) 交上去65 于是愉快的改状压 改到一半的时候想 ...

  8. HTML5漫谈(7)——如何保护HTML5应用代码

    独家供稿:移动Labs HTML5应用采用的仍然是Javascript(JS).HTML.CSS 等Web语言,因而其代码保护就是这些Web代码的保护,而HTML5应用主要功能一般采用JS实现,因此J ...

  9. C# 文件拖放到此程序的操作

       问题描述: 怎么写代码可以实现指定类型的文件通过鼠标拖放显示在程序的文本框中,如:选中3个文件(3个文件的格式有MP3和wma)拖到程序,程序的文本框显示这三个文件的路径...解决代码: thi ...

  10. mysql中trim()函数的用法

    去除左空格函数: LTRIM(str) mysql> SELECT LTRIM(' barbar'); -> 'barbar' 去除右空格函数: RTRIM(str) mysql> ...