zoj 1081 判断点在多边形内
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=81Points Within
Time Limit: 2 Seconds Memory Limit: 65536 KB
Statement of the Problem
Several drawing applications allow us to draw polygons and almost all of them allow us to fill them with some color. The task of filling a polygon reduces to knowing which points are inside it, so programmers have to colour only those points.
You're expected to write a program which tells us if a given point lies inside a given polygon described by the coordinates of its vertices. You can assume that if a point is in the border of the polygon, then it is in fact inside the polygon.
Input Format
The input file may contain several instances of the problem. Each instance consists of: (i) one line containing integers N, 0 < N < 100 and M, respectively the number of vertices of the polygon and the number of points to be tested. (ii) N lines, each containing a pair of integers describing the coordinates of the polygon's vertices; (iii) M lines, each containing a pair of integer coordinates of the points which will be tested for "withinness" in the polygon.
You may assume that: the vertices are all distinct; consecutive vertices in the input are adjacent in the polygon; the last vertex is adjacent to the first one; and the resulting polygon is simple, that is, every vertex is incident with exactly two edges and two edges only intersect at their common endpoint. The last instance is followed by a line with a 0 (zero).
Output Format
For the ith instance in the input, you have to write one line in the output with the phrase "Problem i:", followed by several lines, one for each point tested, in the order they appear in the input. Each of these lines should read "Within" or "Outside", depending on the outcome of the test. The output of two consecutive instances should be separated by a blank line.
Sample Input
3 1
0 0
0 5
5 0
10 2
3 2
4 4
3 1
1 2
1 3
2 2
0
Sample Output
Problem 1:
Outside
Problem 2:
Outside
Within
Source: South America 2001
。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
题意就是判断是否在多边形内,是个的话就输出Within……
看书上敲的,不是太懂,没用到射线求交点稀里糊涂的就求出来了
先贴个好点的代码:转至:http://blog.csdn.net/zxy_snow/article/details/6339621
#include <queue>
#include <stack>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <limits.h>
#include <string.h>
#include <algorithm>
using namespace std;
const int MAX = ;
const double eps = 1e-;
struct point
{
double x,y;
};
struct beeline
{
point a,b;
};
point p[MAX];
int n; bool dy(double x,double y) // x > y
{
return x > y + eps;
}
bool xy(double x,double y) // x < y
{
return x < y - eps;
}
bool dyd(double x,double y) // x >= y
{
return x > y - eps;
}
bool xyd(double x,double y) // x <= y
{
return x < y + eps;
}
bool dd(double x,double y) // x == y
{
return fabs( x - y ) < eps;
}
double crossProduct(point a,point b,point c)//向量 ac 在 ab 的方向
{
return (c.x - a.x)*(b.y - a.y) - (b.x - a.x)*(c.y - a.y);
}
bool onSegment(point a, point b, point c)
{
double maxx = max(a.x,b.x);
double maxy = max(a.y,b.y);
double minx = min(a.x,b.x);
double miny = min(a.y,b.y);
if( dd(crossProduct(a,b,c),0.0) && dyd(c.x,minx) && xyd(c.x,maxx) && dyd(c.y,miny) && xyd(c.y,maxy) )
return true;
return false;
}
bool segIntersect(point p1,point p2, point p3, point p4)
{
double d1 = crossProduct(p3,p4,p1);
double d2 = crossProduct(p3,p4,p2);
double d3 = crossProduct(p1,p2,p3);
double d4 = crossProduct(p1,p2,p4);
if( xy(d1 * d2,0.0) && xy( d3*d4,0.0 ) )
return true;
if( dd(d1,0.0) && onSegment(p3,p4,p1) )
return true;
if( dd(d2,0.0) && onSegment(p3,p4,p2) )
return true;
if( dd(d3,0.0) && onSegment(p1,p2,p3) )
return true;
if( dd(d4,0.0) && onSegment(p1,p2,p4) )
return true;
return false;
}
bool inPolygon(point pot)
{
int count = ;
beeline l;
l.a = pot;
l.b.x = 1e10;
l.b.y = pot.y;
p[n] = p[];
for(int i=; i<n; i++)
{
if( onSegment(p[i],p[i+],pot) )
return true;
if( !dd(p[i].y,p[i+].y) )//水平边不考虑
{
int tmp = -;
if( onSegment(l.a,l.b,p[i]) )//对于顶点与射线相交,该顶点应是所属边上纵坐标上较大的
tmp = i;
else if( onSegment(l.a,l.b,p[i+]) )
tmp = i+;
if( tmp != - && dd(p[tmp].y,max(p[i].y,p[i+].y)) )
count++;
else if( tmp == - && segIntersect(p[i],p[i+],l.a,l.b) )//相交
count++;
}
}
if( count % == )
return true;
return false;
}
int main()
{
int m;
int ind = ;
point pot;
while( ~scanf("%d",&n) && n )
{
if( ind != )
printf("\n");
scanf("%d",&m);
for(int i=; i<n; i++)
scanf("%lf %lf",&p[i].x,&p[i].y);
printf("Problem %d:\n",ind++);
while( m-- )
{
scanf("%lf %lf",&pot.x,&pot.y);
if( inPolygon(pot) )
printf("Within\n");
else
printf("Outside\n");
}
}
return ;
}
下面是我的代码,写的自己不是很懂
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <iostream>
#include <stdlib.h>
#include <map> #define eps 1.0e-5
inline double max(double a,double b){return a>b?a:b;}
inline double min(double a,double b){return a<b?a:b;}
inline double dabs(double a ){return a<?-a:a;} struct point
{
double x,y;
}; point poly[];
int n,m; bool online(const point &p1,const point &p2,const point &p3)
{
if(p2.x>=min(p1.x,p3.x)&&p2.x<=max(p1.x,p3.x)&&
p2.y>=min(p1.y,p3.y)&&p2.y<=max(p1.y,p3.y))
{
if(dabs((p2.x-p1.x)*(p3.y-p1.y)-(p3.x-p1.x)*(p2.y-p1.y))<=eps)
return true;
}
return false;
} bool insidepolygon(point p)
{
int count = ;
double xinters;
point p1,p2;
p1=poly[]; for(int i=;i<=n;i++)
{
p2=poly[i%n];
if(online(p1,p,p2))return true;
if(p.y>min(p1.y,p2.y))
{
if(p.y<=max(p1.y,p2.y))
{
if(p.x<=max(p1.x,p2.x))
{
if(p1.y!=p2.y)
{
xinters=(p.y-p1.y)*(p2.x-p1.x)/(p2.y-p1.y)+p1.x;
//(p.y-p1.y)/(xinter-p1.x)=(p2.y-p1.y)/(p2.x-p1.x)斜率
if(p1.x == p2.x||p.x<=xinters)count++;
}
}
}
}
p1=p2;
}
if(count% == )
return false;
return true;
} int main()
{
int i,j;
point p;
int cas=;
while(scanf("%d",&n)!=EOF)
{
if(n == )break;
if(cas>)printf("\n");
printf("Problem %d:\n",cas++); scanf("%d",&m);
for(i=;i<n;i++)
{
scanf("%lf%lf",&poly[i].x,&poly[i].y);
} for(j=;j<m;j++)
{
scanf("%lf%lf",&p.x,&p.y);
if(insidepolygon(p))
{
printf("Within\n");
}
else
{
printf("Outside\n");
}
}
}
return ;
}
zoj 1081 判断点在多边形内的更多相关文章
- ZOJ 1081 Points Within | 判断点在多边形内
题目: 给个n个点的多边形,n个点按顺序给出,给个点m,判断m在不在多边形内部 题解: 网上有两种方法,这里写一种:射线法 大体的思想是:以这个点为端点,做一条平行与x轴的射线(代码中射线指向x轴正方 ...
- 判断点在多边形内算法的C++实现
目录 1. 算法思路 2. 具体实现 3. 改进空间 1. 算法思路 判断平面内点是否在多边形内有多种算法,其中射线法是其中比较好理解的一种,而且能够支持凹多边形的情况.该算法的思路很简单,就是从目标 ...
- hdu 1756:Cupid's Arrow(计算几何,判断点在多边形内)
Cupid's Arrow Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tot ...
- php之判断点在多边形内的api
1.判断点在多边形内的数学思想:以那个点为顶点,作任意单向射线,如果它与多边形交点个数为奇数个,那么那个点在多边形内,相关公式: <?php class AreaApi{ //$area是一个多 ...
- POJ 2318 TOYS | 二分+判断点在多边形内
题意: 给一个矩形的区域(左上角为(x1,y1) 右下角为(x2,y2)),给出n对(u,v)表示(u,y1) 和 (v,y2)构成线段将矩形切割 这样构成了n+1个多边形,再给出m个点,问每个多边形 ...
- R树判断点在多边形内-Java版本
1.什么是RTree 待补充 2.RTree java依赖 rtree的java开源版本在GitHub上:https://github.com/davidmoten/rtree 上面有详细的使用说明 ...
- hdu 1756 判断点在多边形内 *
模板题 #include<cstdio> #include<iostream> #include<algorithm> #include<cstring> ...
- A Round Peg in a Ground Hole - POJ 1584 (判断凸多边形&判断点在多边形内&判断圆在多边形内)
题目大意:首先给一个圆的半径和圆心,然后给一个多边形的所有点(多边形按照顺时针或者逆时针给的),求,这个多边形是否是凸多边形,如果是凸多边形在判断这个圆是否在这个凸多边形内. 分析:判断凸多边形可 ...
- matlab inpolygon 判断点在多边形内
如何判断一个点在多边形内部? xv= [0 3 3 0 0]; %x坐标 yv= [0 0 3 3 0];%y坐标 x=1.5; y=1.5; in=inpolygon(x,y,xv,yv) plot ...
随机推荐
- sql如何将同个字段不同值打印在一行
group_concat(distinct(img)) group by id通过id分组把img的值打印在一行group_concat()通常和group by一起使用,功能是把某个字段的值打印在一 ...
- Java编译那些事儿【转】
转自:http://blog.csdn.net/lincyang/article/details/8553481 版权声明:本文为博主原创文章,未经博主允许不得转载. 目录(?)[-] 命令行编译 使 ...
- oracle初次使用连接不上
问题描述: win10下,cmd运行 输入sqlplus报一下错误 SP2-1503: 无法初始化 Oracle 调用界面 SP2-0152: ORACLE 不能正常工作 解决办法 cmd右键--以管 ...
- count(*)、count(val)和count(1)的解释
一.关于count的一些谣言: 1.count(*)比count(val)更慢!项目组必须用count(val),不准用count(*),谁用扣谁钱! 2.count(*)用不到索引,count(va ...
- HDU 5961:传递(暴搜)
http://acm.hdu.edu.cn/showproblem.php?pid=5961 题意:中文题意.给出两个图,判断这个两个图是否都是传递的.注意一下传递的定义要看清,一开始没看清连样例都看 ...
- RMAN笔记小结
首先感谢junsansi和leshani两位大师的文笔:我可是好好看了很多遍:这两位哦:我跟你们说:对rman的解说那是相当精彩:文章形如流水,通俗易懂:内容那是入木三分...;好了我也不多说了,反正 ...
- 【转】Eclipse插件大全介绍及下载地址
转载地址:http://developer.51cto.com/art/200906/127169.htm 尚未一一验证. eclipse插件大全介绍,以及下载地址 Eclipse及其插件下载网址大全 ...
- jdbc连接集合
JDBC里统一的使用方法: Class.for(jdbcDriverName); Connection conn=DriverManager.getConnection(url,u ...
- HDU 4709:Herding
Herding Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Su ...
- Windows下Apache+mod_python+Django配置
Windows下Apache+mod_python+Django配置 Apache 首先要安装Apache,我安装的版本是2.2.*: Python python肯定是要安装的,我安装的版本是2.5的 ...