有n个节点的m条无向边的图,节点编号为1~n

然后有点权和边权,给出q个询问,每一个询问给出2点u,v

输出u,v的最短距离

这里的最短距离规定为:

u到v的路径的所有边权+u到v路径上最大的一个点权的和(点权也可以是u,v)

n<=1000

m<=20000

Q<=20000

时限:5000ms

没有点权的话,好处理

加了点权呢?

我们可以先枚举n个节点,跑n次spfa,当枚举节点u时,我们默认节点u是所有路径上点权最大的一个点

即我们枚举节点u时,我们先把点权比u大的节点删除了,在剩下的图跑spfa

但实际上只要在spfa时加一句判断即可,并不用真的去重建图

这样对于每一个询问,我们只要枚举点权最大的点就可以了,每一个询问是Q(n)

ans=min(dis[i][u]+dis[i][v]+cost[i])

但是这样我还是tle了, 因为这样需要开一个2维数组

dis[i][j]表示以第i个点为起点,到达节点j的短路

最后选择先存下所有询问,离线更新ans,在spfa的同时枚举更新

为什么这样就可以了呢?

因为一维数组比二维数组快很多。

从这道题:

1.当点权和边权混在一起比较难求的时候,我们可以先假设点权最大,分离出点权和边权,再枚举每一个点,就可以了

不止这个, 枚举的思想在很多时候都很好用

2.用stl的queue,时间是4000ms左右,用自己的队列,时间是3500左右,快了半秒

3.一维数组的访问比二维数组快很多

4.做题的时候要注意,循环的时候的终止条件,是到n? m? 还是Q?这个写错就wa了,又难发现

 #include<cstdio>
#include<cstring>
#include<algorithm> #define ll long long using namespace std; const int maxn=;
const int maxm=+;
const ll inf=0x3f3f3f3f3f3f3f3f; struct Edge
{
int to,next;
ll w;
};
Edge edge[maxm<<];
int head[maxn];
int tot;
int que[maxm<<];
ll ans[maxm];
int a[maxm];
int b[maxm];
ll dis[maxn];
ll cost[maxn];
bool vis[maxn];
int n,Q; void init()
{
memset(head,-,sizeof head);
tot=;
} void addedge(int u,int v,ll w)
{
edge[tot].to=v;
edge[tot].w=w;
edge[tot].next=head[u];
head[u]=tot++;
} void solve(); int main()
{
int m;
while(scanf("%d %d",&n,&m)){
if(!n&&!m)
break; for(int i=;i<=n;i++)
scanf("%lld",&cost[i]);
int u,v;
ll w;
init();
for(int i=;i<=m;i++){
scanf("%d %d %lld",&u,&v,&w);
addedge(u,v,w);
addedge(v,u,w);
}
scanf("%d",&Q);
for(int i=;i<=Q;i++){
scanf("%d %d",&a[i],&b[i]);
} solve();
}
return ;
} void spfa(int srt)
{
for(int i=;i<=n;i++)
dis[i]=inf;
dis[srt]=;
memset(vis,false,sizeof vis);
int l=,r=;
que[r++]=srt;
vis[srt]=true;
while(l<r){
int u=que[l++];
vis[u]=false;
for(int i=head[u];~i;i=edge[i].next){
int v=edge[i].to;
ll w=edge[i].w;
if(cost[v]>cost[srt])
continue;
if(dis[v]>dis[u]+w){
dis[v]=dis[u]+w;
if(!vis[v]){
que[r++]=v;
vis[v]=true;
}
}
}
}
for(int i=;i<=Q;i++){
if(dis[a[i]]==inf||dis[b[i]]==inf)
continue;
if(dis[a[i]]+dis[b[i]]+cost[srt]<ans[i])
ans[i]=dis[a[i]]+dis[b[i]]+cost[srt];
}
} void solve()
{
for(int i=;i<=Q;i++)
ans[i]=inf;
for(int i=;i<=n;i++){
spfa(i);
} for(int i=;i<=Q;i++){
if(ans[i]==inf)
printf("-1\n");
else
printf("%lld\n",ans[i]);
}
printf("\n"); return ;
}

POJ 4046 Sightseeing 枚举+最短路 好题的更多相关文章

  1. POJ 3463 Sightseeing (次短路经数)

    Sightseeing Time Limit: 2000MS   Memory Limit: 65536K Total Submissions:10005   Accepted: 3523 Descr ...

  2. hdu 2363(枚举+最短路好题)

    Cycling Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Sub ...

  3. POJ 4046 Sightseeing

    Sightseeing Time Limit: 5000ms Memory Limit: 65536KB This problem will be judged on PKU. Original ID ...

  4. POJ 3463 Sightseeing 【最短路与次短路】

    题目 Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the ...

  5. poj1511/zoj2008 Invitation Cards(最短路模板题)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Invitation Cards Time Limit: 5 Seconds    ...

  6. POJ 1637 Sightseeing tour(最大流)

    POJ 1637 Sightseeing tour 题目链接 题意:给一些有向边一些无向边,问能否把无向边定向之后确定一个欧拉回路 思路:这题的模型很的巧妙,转一个http://blog.csdn.n ...

  7. POJ 3621 Sightseeing Cows(最优比例环+SPFA检测)

    Sightseeing Cows Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10306   Accepted: 3519 ...

  8. poj 1873 凸包+枚举

    The Fortified Forest Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6198   Accepted: 1 ...

  9. HDU 5521.Meeting 最短路模板题

    Meeting Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total ...

随机推荐

  1. Java——关于String(字符串)

     String s = "abc";//创建一个字符串对象在常量池中. String s2 = new String("abc");//创建两个对象   一 ...

  2. gprof使用介绍

    gprof 1.1      简介 gprof实际上只是一个用于读取profile结果文件的工具.gprof采用混合方法来收集程序的统计信息,他使用检测方法,在编译过程中在函数入口处插入计数器用于收集 ...

  3. centos6.7 本地yum源配置

    [BEGIN] 2016/11/9 21:47:31[root@11g ~]# mount /dev/cdrom /mediamount: block device /dev/sr0 is write ...

  4. solr 主从模式和solrcloud集群模式

    主从模式 主节点有单点故障问题:没有主从自动切换,没有failover,主机down掉了的话,整个数据变成只读.并且需要一台机单独做索引,浪费资源,所有数据都需要在这台机器上单独存在一份,索引变化较大 ...

  5. Android Studio导入Project的方法

    Android Studio到现在已经发展到0.8+的版本了,最近也在试着使用它,原因是多方面的,一个毕竟是未来的趋势,二则是github上越来越多的大牛开源项目都是基于Android Studio的 ...

  6. CodeFirstMigrations更新数据库结构(EF数据迁移)

    背景 code first起初当修改model后,要持久化至数据库中时,总要把原数据库给删除掉再创建(DropCreateDatabaseIfModelChanges),此时就会产生一个问题,当我们的 ...

  7. mysql 索引过长1071-max key length is 767 byte

    问题 create table: Specified key was too long; max key length is 767 bytes   原因 数据库表采用utf8编码,其中varchar ...

  8. shell知识点

    各个项目以实践为主.原理及更多细节介绍,请查看官方文档: 例如:bash,grub,postfix,pam,fastcgi,httpd,rsync等诸多项目. 各种总结表格 http://www.cn ...

  9. P1010 笨小猴【tyvj】

    /*=========================================================== P1010 笨小猴 描述 Description 笨小猴的词汇量很小,所以每 ...

  10. 【转】第6篇:Xilium CefGlue 关于 CLR Object 与 JS 交互类库封装报告:自动注册JS脚本+自动反射方法分析

    作者: 牛A与牛C之间 时间: 2013-11-21 分类: 技术文章 | 暂无评论 | 编辑文章 主页 » 技术文章 » 第6篇:Xilium CefGlue 关于 CLR Object 与 JS ...