DFS + Memorized Search (DP)

class Solution {
int dfs(int i, int j, int row, int col,
vector<vector<int>>& A, vector<vector<int>>& dp)
{
if(dp[i][j] != ) return dp[i][j]; if (i > && A[i-][j] > A[i][j])
{
dp[i][j] = max(dp[i][j], dfs(i - , j, row, col, A, dp));
}
if (i < row - && A[i+][j] > A[i][j])
{
dp[i][j] = max(dp[i][j], dfs(i + , j, row, col, A, dp));
}
if (j > && A[i][j-] > A[i][j])
{
dp[i][j] = max(dp[i][j], dfs(i, j - , row, col, A, dp));
}
if (j < col - && A[i][j+] > A[i][j])
{
dp[i][j] = max(dp[i][j], dfs(i, j + , row, col, A, dp));
} return ++dp[i][j];
}
public:
/**
* @param A an integer matrix
* @return an integer
*/
int longestIncreasingContinuousSubsequenceII(vector<vector<int>>& A)
{
if (A.empty() || A[].empty()) return ; int ret = ;
int row = A.size();
int col = A[].size(); vector<vector<int>> dp(row, vector<int>(col)); for(int i = ; i < row; i ++)
for(int j = ; j < col; j ++)
{
ret = max(ret, dfs(i, j, row, col, A, dp));
} return ret;
}
};

LintCode "Longest Increasing Continuous subsequence II" !!的更多相关文章

  1. [LintCode] Longest Increasing Continuous subsequence

    http://www.lintcode.com/en/problem/longest-increasing-continuous-subsequence/# Give you an integer a ...

  2. [LintCode] Longest Increasing Continuous Subsequence 最长连续递增子序列

    Give an integer array,find the longest increasing continuous subsequence in this array. An increasin ...

  3. LintCode 397: Longest Increasing Continuous Subsequence

    LintCode 397: Longest Increasing Continuous Subsequence 题目描述 给定一个整数数组(下标从0到n - 1,n表示整个数组的规模),请找出该数组中 ...

  4. Lintcode397 Longest Increasing Continuous Subsequence solution 题解

    [题目描述] Give an integer array,find the longest increasing continuous subsequence in this array. An in ...

  5. Longest Increasing Common Subsequence (LICS)

    最长上升公共子序列(Longest Increasing Common Subsequence,LICS)也是经典DP问题,是LCS与LIS的混合. Problem 求数列 a[1..n], b[1. ...

  6. [LintCode] Longest Increasing Subsequence 最长递增子序列

    Given a sequence of integers, find the longest increasing subsequence (LIS). You code should return ...

  7. Longest Continuous Increasing Subsequence II

    Description Given an integer matrix. Find the longest increasing continuous subsequence in this matr ...

  8. leetcode300. Longest Increasing Subsequence 最长递增子序列 、674. Longest Continuous Increasing Subsequence

    Longest Increasing Subsequence 最长递增子序列 子序列不是数组中连续的数. dp表达的意思是以i结尾的最长子序列,而不是前i个数字的最长子序列. 初始化是dp所有的都为1 ...

  9. 【Lintcode】076.Longest Increasing Subsequence

    题目: Given a sequence of integers, find the longest increasing subsequence (LIS). You code should ret ...

随机推荐

  1. [转载] Python 列表(list)、字典(dict)、字符串(string)常用基本操作小结

    创建列表 sample_list = ['a',1,('a','b')] Python 列表操作 sample_list = ['a','b',0,1,3] 得到列表中的某一个值 value_star ...

  2. ion-tap选项卡及路由结合ion-tap

    ion-tabs简介 <!DOCTYPE html> <html ng-app="ionic"> <head> <meta name=&q ...

  3. json数据的jquery操作和asp.net后台操作

    jquery操作 json对象创建 var item0={"a":"val1","b":"val2"}; json对象字 ...

  4. 图像特征提取三大法宝:HOG特征,LBP特征,Haar特征(转载)

    (一)HOG特征 1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和 ...

  5. sqlserver 索引

    什么是索引 拿汉语字典的目录页(索引)打比方:正如汉语字典中的汉字按页存放一样,SQL Server中的数据记录也是按页存放的,每页容量一般为4K .为了加快查找的速度,汉语字(词)典一般都有按拼音. ...

  6. HTTP详解(2)

    HTTP详解(2)-请求.响应.缓存 分类: 网络知识2013-03-17 16:45 1969人阅读 评论(0) 收藏 举报   目录(?)[+]   1. HTTP请求格式 做过Socket编程的 ...

  7. spark与storm的对比

    对比点 Storm Spark Streaming 实时计算模型 纯实时,来一条数据,处理一条数据 准实时,对一个时间段内的数据收集起来,作为一个RDD,再处理 实时计算延迟度 毫秒级 秒级 吞吐量 ...

  8. php配置伪静态的方法

    mod_rewrite是Apache的一个非常强大的功能,它可以实现伪静态页面.下面我详细说说它的使用方法 .检测Apache是否支持mod_rewrite 通过php提供的phpinfo()函数查看 ...

  9. POJ-3140 Contestants Division (树)

    题目大意:一棵树,带点权.将这棵树分成两部分,找出使得两部分的点权和的差最小. 题目分析:直接dfs即可.找出每棵子树u的点权和size(u),如果以u和它的父节点之间的边为界,那么两边的点权和分别为 ...

  10. matlab 工具之各种降维方法工具包,下载及使用教程,有PCA, LDA, 等等。。。

    最近跑深度学习,提出的feature是4096维的,放到我们的程序里,跑得很慢,很慢.... 于是,一怒之下,就给他降维处理了,但是matlab 自带的什么pca( ), princomp( )函数, ...