DFS + Memorized Search (DP)

class Solution {
int dfs(int i, int j, int row, int col,
vector<vector<int>>& A, vector<vector<int>>& dp)
{
if(dp[i][j] != ) return dp[i][j]; if (i > && A[i-][j] > A[i][j])
{
dp[i][j] = max(dp[i][j], dfs(i - , j, row, col, A, dp));
}
if (i < row - && A[i+][j] > A[i][j])
{
dp[i][j] = max(dp[i][j], dfs(i + , j, row, col, A, dp));
}
if (j > && A[i][j-] > A[i][j])
{
dp[i][j] = max(dp[i][j], dfs(i, j - , row, col, A, dp));
}
if (j < col - && A[i][j+] > A[i][j])
{
dp[i][j] = max(dp[i][j], dfs(i, j + , row, col, A, dp));
} return ++dp[i][j];
}
public:
/**
* @param A an integer matrix
* @return an integer
*/
int longestIncreasingContinuousSubsequenceII(vector<vector<int>>& A)
{
if (A.empty() || A[].empty()) return ; int ret = ;
int row = A.size();
int col = A[].size(); vector<vector<int>> dp(row, vector<int>(col)); for(int i = ; i < row; i ++)
for(int j = ; j < col; j ++)
{
ret = max(ret, dfs(i, j, row, col, A, dp));
} return ret;
}
};

LintCode "Longest Increasing Continuous subsequence II" !!的更多相关文章

  1. [LintCode] Longest Increasing Continuous subsequence

    http://www.lintcode.com/en/problem/longest-increasing-continuous-subsequence/# Give you an integer a ...

  2. [LintCode] Longest Increasing Continuous Subsequence 最长连续递增子序列

    Give an integer array,find the longest increasing continuous subsequence in this array. An increasin ...

  3. LintCode 397: Longest Increasing Continuous Subsequence

    LintCode 397: Longest Increasing Continuous Subsequence 题目描述 给定一个整数数组(下标从0到n - 1,n表示整个数组的规模),请找出该数组中 ...

  4. Lintcode397 Longest Increasing Continuous Subsequence solution 题解

    [题目描述] Give an integer array,find the longest increasing continuous subsequence in this array. An in ...

  5. Longest Increasing Common Subsequence (LICS)

    最长上升公共子序列(Longest Increasing Common Subsequence,LICS)也是经典DP问题,是LCS与LIS的混合. Problem 求数列 a[1..n], b[1. ...

  6. [LintCode] Longest Increasing Subsequence 最长递增子序列

    Given a sequence of integers, find the longest increasing subsequence (LIS). You code should return ...

  7. Longest Continuous Increasing Subsequence II

    Description Given an integer matrix. Find the longest increasing continuous subsequence in this matr ...

  8. leetcode300. Longest Increasing Subsequence 最长递增子序列 、674. Longest Continuous Increasing Subsequence

    Longest Increasing Subsequence 最长递增子序列 子序列不是数组中连续的数. dp表达的意思是以i结尾的最长子序列,而不是前i个数字的最长子序列. 初始化是dp所有的都为1 ...

  9. 【Lintcode】076.Longest Increasing Subsequence

    题目: Given a sequence of integers, find the longest increasing subsequence (LIS). You code should ret ...

随机推荐

  1. JS基础知识(数组)

    1,数组 var colors = new Array(); var colors = new Array(20); var colors = new Array(“red”, “blue”, “gr ...

  2. iOS学习笔记---oc语言第九天

    初级内存管理 iOS应用程序出现crash(闪退),90%以上是内存问题////其他:数组越界,方法只声明没实现 内存问题体现在两个方面:内存溢出\野指针异常 内存溢出:程序运行超出内存上限 野指针异 ...

  3. Ubuntu下输入su - [root]后提示“su:认证失败”

    Ubuntu下,进行用户到管理员切换时,使用命令su - 时,提示输入的是root密码,而在Ubuntu下root的密码起始是随机生成的(后续可由用户自己设置),且ubuntu下只能调用root,不能 ...

  4. js 下载文件 window.location.href

    window.location.href ="../../pages2/assessmentplan/exportPointAsessment.do?planId="+planId ...

  5. eclipse项目导入到android studio

    只需要添加gradle文件,在里面添加如下代码片段------------------------------------------- main { manifest.srcFile 'Androi ...

  6. HDU 4599 概率DP

    先推出F(n)的公式: 设dp[i]为已经投出连续i个相同的点数平均还要都多少次才能到达目标状态. 则有递推式dp[i] = 1/6*(1+dp[i+1]) + 5/6*(1+dp[1]).考虑当前这 ...

  7. Linux网络管理概述

    概述:计算机基础知识.网络基础知识其实是所有的程序员所必须的,甚至已经不仅仅是程序员的专利,而是每一个人都应该掌握的计算机知识. 主要内容: 一.网络基础 二.Linux网络配置 三.Linux网络命 ...

  8. 局域网络ping不通

    描述:今天和老崔.老周去公司的新办公地点//相比临时的,十分高大上.当我们把两台台式电脑A.B装好了,网络设置也陪好了,确认能够上网,再装打印机的时候,发现搜索不到打印机的ip(打印机也是有自己的IP ...

  9. Json数据,转换规则,

    JSON数据转换,规则是遇见json 中的{},则是数组[],遇见name:value,则是'key'=>'value', 但是不带键值的数组如['xxxxxx'],json_encode后仍然 ...

  10. C语言指针与数组的定义与声明易错分析

    部分摘自<C语言深度解剖> 1.定义为数组,声明为指针 在文件1中定义: char a[100]; 在文件2中声明: extern char *a; //这样是错误的 这里的extern告 ...