I0415 15:03:37.603461 27311 solver.cpp:42] Solver scaffolding done.
I0415 15:03:37.603549 27311 solver.cpp:247] Solving AlexNet
I0415 15:03:37.603559 27311 solver.cpp:248] Learning Rate Policy: step
I0415 15:03:37.749981 27311 solver.cpp:214] Iteration 0, loss = 5.45141
I0415 15:03:37.750030 27311 solver.cpp:229]     Train net output #0: loss = 5.45141 (* 1 = 5.45141 loss)
I0415 15:03:37.750048 27311 solver.cpp:489] Iteration 0, lr = 0.001
I0415 15:03:38.316994 27311 solver.cpp:214] Iteration 12, loss = 4.23865
I0415 15:03:38.317054 27311 solver.cpp:229]     Train net output #0: loss = 4.23865 (* 1 = 4.23865 loss)
I0415 15:03:38.317068 27311 solver.cpp:489] Iteration 12, lr = 0.001
I0415 15:03:38.920938 27311 solver.cpp:214] Iteration 24, loss = 2.49914
I0415 15:03:38.921000 27311 solver.cpp:229]     Train net output #0: loss = 2.49914 (* 1 = 2.49914 loss)
I0415 15:03:38.921016 27311 solver.cpp:489] Iteration 24, lr = 0.001
I0415 15:03:39.509793 27311 solver.cpp:214] Iteration 36, loss = 3.76504
I0415 15:03:39.509850 27311 solver.cpp:229]     Train net output #0: loss = 3.76504 (* 1 = 3.76504 loss)
I0415 15:03:39.509861 27311 solver.cpp:489] Iteration 36, lr = 0.001
I0415 15:03:40.080806 27311 solver.cpp:214] Iteration 48, loss = 3.74901
I0415 15:03:40.080862 27311 solver.cpp:229]     Train net output #0: loss = 3.74901 (* 1 = 3.74901 loss)
I0415 15:03:40.080878 27311 solver.cpp:489] Iteration 48, lr = 0.001
I0415 15:03:40.643797 27311 solver.cpp:214] Iteration 60, loss = 2.27091
I0415 15:03:40.643849 27311 solver.cpp:229]     Train net output #0: loss = 2.27091 (* 1 = 2.27091 loss)
I0415 15:03:40.643860 27311 solver.cpp:489] Iteration 60, lr = 0.001
I0415 15:03:41.217475 27311 solver.cpp:214] Iteration 72, loss = 2.67078
I0415 15:03:41.217541 27311 solver.cpp:229]     Train net output #0: loss = 2.67078 (* 1 = 2.67078 loss)
I0415 15:03:41.217561 27311 solver.cpp:489] Iteration 72, lr = 0.001
I0415 15:03:41.793390 27311 solver.cpp:214] Iteration 84, loss = 1.77313
I0415 15:03:41.793452 27311 solver.cpp:229]     Train net output #0: loss = 1.77313 (* 1 = 1.77313 loss)
I0415 15:03:41.793468 27311 solver.cpp:489] Iteration 84, lr = 0.001
I0415 15:03:42.362951 27311 solver.cpp:214] Iteration 96, loss = 3.49406
I0415 15:03:42.363004 27311 solver.cpp:229]     Train net output #0: loss = 3.49406 (* 1 = 3.49406 loss)
I0415 15:03:42.363025 27311 solver.cpp:489] Iteration 96, lr = 0.001
I0415 15:03:42.946568 27311 solver.cpp:214] Iteration 108, loss = 2.81601
I0415 15:03:42.946633 27311 solver.cpp:229]     Train net output #0: loss = 2.81601 (* 1 = 2.81601 loss)
I0415 15:03:42.946651 27311 solver.cpp:489] Iteration 108, lr = 0.001
I0415 15:03:43.524155 27311 solver.cpp:214] Iteration 120, loss = 2.85056
I0415 15:03:43.524247 27311 solver.cpp:229]     Train net output #0: loss = 2.85056 (* 1 = 2.85056 loss)
I0415 15:03:43.524265 27311 solver.cpp:489] Iteration 120, lr = 0.001
I0415 15:03:44.100580 27311 solver.cpp:214] Iteration 132, loss = 3.58945
I0415 15:03:44.100646 27311 solver.cpp:229]     Train net output #0: loss = 3.58945 (* 1 = 3.58945 loss)
I0415 15:03:44.100661 27311 solver.cpp:489] Iteration 132, lr = 0.001
F0415 15:03:44.536542 27311 math_functions.cpp:91] Check failed: error == cudaSuccess (4 vs. 0)  unspecified launch failure
*** Check failure stack trace: ***
    @     0x7f01dbd9ddaa  (unknown)
    @     0x7f01dbd9dce4  (unknown)
    @     0x7f01dbd9d6e6  (unknown)
    @     0x7f01dbda0687  (unknown)
    @     0x7f01dc1bb3f5  caffe::caffe_copy<>()
    @     0x7f01dc230232  caffe::BasePrefetchingDataLayer<>::Forward_gpu()
    @     0x7f01dc1d9d6f  caffe::Net<>::ForwardFromTo()
    @     0x7f01dc1da197  caffe::Net<>::ForwardPrefilled()
    @     0x7f01dc20cbe5  caffe::Solver<>::Step()
    @     0x7f01dc20d52f  caffe::Solver<>::Solve()
    @           0x406428  train()
    @           0x404961  main
    @     0x7f01db2afec5  (unknown)
    @           0x404f0d  (unknown)
    @              (nil)  (unknown)
Aborted
wangxiao@gtx-980:~/Downloads/lstm_caffe_master$

---------------------------------------------------------------------------------------------------------------------------------------

怎么破 ???求解答。。。。

well, the only word I want to say is : where amazing happens ???

I restart my pc and run the code again and it worked ......

caffe 训练时,出现错误:Check failed: error == cudaSuccess (4 vs. 0) unspecified launch failure的更多相关文章

  1. caffe运行错误: im2col.cu:61] Check failed: error == cudaSuccess (8 vs. 0) invalid device function

    错误: im2col.cu:61] Check failed: error == cudaSuccess (8 vs. 0)  invalid device function 原因:由于Makefil ...

  2. 配置SSD-caffe测试时出现“Check failed: error == cudaSuccess (10 vs. 0) invalid device ordinal”解决方案

    这是由于GPU数量不匹配造成的,如果训练自己的数据,那么我们只需要将solver.prototxt文件中的device_id项改为自己的GPU块数,一块就是0,两块就是1,以此类推. 但是SSD配置时 ...

  3. 【CUDA开发】 Check failed: error == cudaSuccess (8 vs. 0) invalid device function

    最近在复现R-CNN一系列的实验时,配置代码环境真是花费了不少时间.由于对MATLAB不熟悉,实验采用的都是github上rbg大神的Python版本.在配置Faster R-CNN时,编译没有问题, ...

  4. Caffe 分类问题 Check failed: error == cudaSuccess (2 vs. 0) out of memory

    如果图片过大,需要适当缩小batch_size的值,否则使用GPU时可能超出其缓存大小而报错

  5. Check failed: status == CUBLAS_STATUS_SUCCESS (11 vs. 0) CUBLAS_STATUS_MAPPING_ERROR

    I0930 21:23:15.115576 30918 solver.cpp:281] Learning Rate Policy: multistepF0930 21:23:17.263314 310 ...

  6. check failed status == cudnn_status_success (4 vs. 0) cudnn_status_internal_error

    Check failed: error == cudaSuccess (30 vs. 0) unknown error  这个有可能是显存不足造成的,或者网络参数不对造成的 check failed ...

  7. 目标检测faster rcnn error == cudaSuccess (2 vs. 0) out of memory

    想尝试 更深更强的网络,或者自己写了一个费显存的层,发现1080 ti的11G显存不够用了,老师报显存不够怎么办? Check failed: error == cudaSuccess (2 vs. ...

  8. 发布到远程存储库时遇到错误: Git failed with a fatal error.

    正在推送 master发布到远程存储库时遇到错误: Git failed with a fatal error.Authentication failed for 'http://1212121xxx ...

  9. windows7下解决caffe check failed registry.count(type) == 1(0 vs. 1) unknown layer type问题

    在Windows7下调用vs2013生成的Caffe静态库时经常会提示Check failed: registry.count(type) == 1 (0 vs. 1) Unknown layer t ...

随机推荐

  1. SharePoint 2013 重复的管理账户错误:已添加项。字典中的关键字 所添加的关键字

    博客地址:http://blog.csdn.net/FoxDave 今天在管理中心创建新的Web应用程序时,想注册一个新的管理账户,一着急点了两次按钮,结果就出现了这样的错误...怎么说呢,太奇葩 ...

  2. HTML5实战教程———开发一个简单漂亮的登录页面

    最近看过几个基于HTML5开发的移动应用,比如臭名昭著的12036移动客户端就是主要使用HTML5来实现的,虽然还是有点反应迟钝,但已经比较流畅了,相信随着智能手机的配置越来越高性能越来越好,会越来越 ...

  3. selectNodes

    解析beans.xml的时候有时候找不到节点,把其他多余的删除之后就好了,不知道为什么.

  4. 【SQL查询日志】查看数据库历史查询记录

    --关键字:cross apply & outer apply --最后更新:2011-10-20 作者:Ronli--更新链接:http://www.cnblogs.com/ronli/ar ...

  5. 二、XML约束

    XML约束有dtd约束和Schema约束两种 dtd约束:可以在xml内部写dtd约束也可以在xml中引用外部dtd文件 book.dtd<!ELEMENT 书架 (书+)>    < ...

  6. 让NSURLConnection在子线程中运行

    可以有两个办法让NSURLConnection在子线程中运行,即将NSURLConnection加入到run loop或者NSOperationQueue中去运行. 前面提到可以将NSTimer手动加 ...

  7. 黑马程序员——【Java基础】——String、StringBuffer和基本数据包装类

    ---------- android培训.java培训.期待与您交流! ---------- 类String---------------------------------------------- ...

  8. 【LeetCode OJ】Interleaving String

    Problem Link: http://oj.leetcode.com/problems/interleaving-string/ Given s1, s2, s3, find whether s3 ...

  9. ERP PowerDesigner工具使用(二)

    工具简介:

  10. this的指向及应用

    this的指向: //this 指的是调用 当前方法 (函数) 的那个对象 function fn1(){ this; } //fn1(); this => window //obj.oncli ...