I0415 15:03:37.603461 27311 solver.cpp:42] Solver scaffolding done.
I0415 15:03:37.603549 27311 solver.cpp:247] Solving AlexNet
I0415 15:03:37.603559 27311 solver.cpp:248] Learning Rate Policy: step
I0415 15:03:37.749981 27311 solver.cpp:214] Iteration 0, loss = 5.45141
I0415 15:03:37.750030 27311 solver.cpp:229]     Train net output #0: loss = 5.45141 (* 1 = 5.45141 loss)
I0415 15:03:37.750048 27311 solver.cpp:489] Iteration 0, lr = 0.001
I0415 15:03:38.316994 27311 solver.cpp:214] Iteration 12, loss = 4.23865
I0415 15:03:38.317054 27311 solver.cpp:229]     Train net output #0: loss = 4.23865 (* 1 = 4.23865 loss)
I0415 15:03:38.317068 27311 solver.cpp:489] Iteration 12, lr = 0.001
I0415 15:03:38.920938 27311 solver.cpp:214] Iteration 24, loss = 2.49914
I0415 15:03:38.921000 27311 solver.cpp:229]     Train net output #0: loss = 2.49914 (* 1 = 2.49914 loss)
I0415 15:03:38.921016 27311 solver.cpp:489] Iteration 24, lr = 0.001
I0415 15:03:39.509793 27311 solver.cpp:214] Iteration 36, loss = 3.76504
I0415 15:03:39.509850 27311 solver.cpp:229]     Train net output #0: loss = 3.76504 (* 1 = 3.76504 loss)
I0415 15:03:39.509861 27311 solver.cpp:489] Iteration 36, lr = 0.001
I0415 15:03:40.080806 27311 solver.cpp:214] Iteration 48, loss = 3.74901
I0415 15:03:40.080862 27311 solver.cpp:229]     Train net output #0: loss = 3.74901 (* 1 = 3.74901 loss)
I0415 15:03:40.080878 27311 solver.cpp:489] Iteration 48, lr = 0.001
I0415 15:03:40.643797 27311 solver.cpp:214] Iteration 60, loss = 2.27091
I0415 15:03:40.643849 27311 solver.cpp:229]     Train net output #0: loss = 2.27091 (* 1 = 2.27091 loss)
I0415 15:03:40.643860 27311 solver.cpp:489] Iteration 60, lr = 0.001
I0415 15:03:41.217475 27311 solver.cpp:214] Iteration 72, loss = 2.67078
I0415 15:03:41.217541 27311 solver.cpp:229]     Train net output #0: loss = 2.67078 (* 1 = 2.67078 loss)
I0415 15:03:41.217561 27311 solver.cpp:489] Iteration 72, lr = 0.001
I0415 15:03:41.793390 27311 solver.cpp:214] Iteration 84, loss = 1.77313
I0415 15:03:41.793452 27311 solver.cpp:229]     Train net output #0: loss = 1.77313 (* 1 = 1.77313 loss)
I0415 15:03:41.793468 27311 solver.cpp:489] Iteration 84, lr = 0.001
I0415 15:03:42.362951 27311 solver.cpp:214] Iteration 96, loss = 3.49406
I0415 15:03:42.363004 27311 solver.cpp:229]     Train net output #0: loss = 3.49406 (* 1 = 3.49406 loss)
I0415 15:03:42.363025 27311 solver.cpp:489] Iteration 96, lr = 0.001
I0415 15:03:42.946568 27311 solver.cpp:214] Iteration 108, loss = 2.81601
I0415 15:03:42.946633 27311 solver.cpp:229]     Train net output #0: loss = 2.81601 (* 1 = 2.81601 loss)
I0415 15:03:42.946651 27311 solver.cpp:489] Iteration 108, lr = 0.001
I0415 15:03:43.524155 27311 solver.cpp:214] Iteration 120, loss = 2.85056
I0415 15:03:43.524247 27311 solver.cpp:229]     Train net output #0: loss = 2.85056 (* 1 = 2.85056 loss)
I0415 15:03:43.524265 27311 solver.cpp:489] Iteration 120, lr = 0.001
I0415 15:03:44.100580 27311 solver.cpp:214] Iteration 132, loss = 3.58945
I0415 15:03:44.100646 27311 solver.cpp:229]     Train net output #0: loss = 3.58945 (* 1 = 3.58945 loss)
I0415 15:03:44.100661 27311 solver.cpp:489] Iteration 132, lr = 0.001
F0415 15:03:44.536542 27311 math_functions.cpp:91] Check failed: error == cudaSuccess (4 vs. 0)  unspecified launch failure
*** Check failure stack trace: ***
    @     0x7f01dbd9ddaa  (unknown)
    @     0x7f01dbd9dce4  (unknown)
    @     0x7f01dbd9d6e6  (unknown)
    @     0x7f01dbda0687  (unknown)
    @     0x7f01dc1bb3f5  caffe::caffe_copy<>()
    @     0x7f01dc230232  caffe::BasePrefetchingDataLayer<>::Forward_gpu()
    @     0x7f01dc1d9d6f  caffe::Net<>::ForwardFromTo()
    @     0x7f01dc1da197  caffe::Net<>::ForwardPrefilled()
    @     0x7f01dc20cbe5  caffe::Solver<>::Step()
    @     0x7f01dc20d52f  caffe::Solver<>::Solve()
    @           0x406428  train()
    @           0x404961  main
    @     0x7f01db2afec5  (unknown)
    @           0x404f0d  (unknown)
    @              (nil)  (unknown)
Aborted
wangxiao@gtx-980:~/Downloads/lstm_caffe_master$

---------------------------------------------------------------------------------------------------------------------------------------

怎么破 ???求解答。。。。

well, the only word I want to say is : where amazing happens ???

I restart my pc and run the code again and it worked ......

caffe 训练时,出现错误:Check failed: error == cudaSuccess (4 vs. 0) unspecified launch failure的更多相关文章

  1. caffe运行错误: im2col.cu:61] Check failed: error == cudaSuccess (8 vs. 0) invalid device function

    错误: im2col.cu:61] Check failed: error == cudaSuccess (8 vs. 0)  invalid device function 原因:由于Makefil ...

  2. 配置SSD-caffe测试时出现“Check failed: error == cudaSuccess (10 vs. 0) invalid device ordinal”解决方案

    这是由于GPU数量不匹配造成的,如果训练自己的数据,那么我们只需要将solver.prototxt文件中的device_id项改为自己的GPU块数,一块就是0,两块就是1,以此类推. 但是SSD配置时 ...

  3. 【CUDA开发】 Check failed: error == cudaSuccess (8 vs. 0) invalid device function

    最近在复现R-CNN一系列的实验时,配置代码环境真是花费了不少时间.由于对MATLAB不熟悉,实验采用的都是github上rbg大神的Python版本.在配置Faster R-CNN时,编译没有问题, ...

  4. Caffe 分类问题 Check failed: error == cudaSuccess (2 vs. 0) out of memory

    如果图片过大,需要适当缩小batch_size的值,否则使用GPU时可能超出其缓存大小而报错

  5. Check failed: status == CUBLAS_STATUS_SUCCESS (11 vs. 0) CUBLAS_STATUS_MAPPING_ERROR

    I0930 21:23:15.115576 30918 solver.cpp:281] Learning Rate Policy: multistepF0930 21:23:17.263314 310 ...

  6. check failed status == cudnn_status_success (4 vs. 0) cudnn_status_internal_error

    Check failed: error == cudaSuccess (30 vs. 0) unknown error  这个有可能是显存不足造成的,或者网络参数不对造成的 check failed ...

  7. 目标检测faster rcnn error == cudaSuccess (2 vs. 0) out of memory

    想尝试 更深更强的网络,或者自己写了一个费显存的层,发现1080 ti的11G显存不够用了,老师报显存不够怎么办? Check failed: error == cudaSuccess (2 vs. ...

  8. 发布到远程存储库时遇到错误: Git failed with a fatal error.

    正在推送 master发布到远程存储库时遇到错误: Git failed with a fatal error.Authentication failed for 'http://1212121xxx ...

  9. windows7下解决caffe check failed registry.count(type) == 1(0 vs. 1) unknown layer type问题

    在Windows7下调用vs2013生成的Caffe静态库时经常会提示Check failed: registry.count(type) == 1 (0 vs. 1) Unknown layer t ...

随机推荐

  1. UITextView的字数限制 及 添加自定义PlaceHolder

    - (void)textViewDidChange:(UITextView *)textView{ NSString *temp=textView.text; //字数超过限制数量时,进行截取替换 i ...

  2. 创建MySQL数据库和表(一)

    一.启动MySQL服务 1.在Windows操作系统的“服务”中启动,找到你安装MySQL的起的服务名称,我本机服务名的是MySQL. 2.在命令行中用命令启动: A.启动MySQL服务:net st ...

  3. stm32 dac库函数解读

    1.简述: 12位数字输入,电压输出,DAC可以配置为8位或12位模式.有2个输出通道.在双DAC模式下,两个通道可以独立地工作. 特殊功能: 噪声波形生成,三角波形生成,外部触发转换,双DAC同时或 ...

  4. 无线安全渗透测试套件WiFi-Pumpkin新版本发布

    WiFi-Pumpkin是一款无线安全检测工具,利用该工具可以伪造接入点完成中间人攻击,同时也支持一些其它的无线渗透功能.旨在提供更安全的无线网络服务,该工具可用来监听目标的流量数据,通过无线钓鱼的方 ...

  5. [zz]论程序员

    g9老大多年前的趣文: 论程序员 根据钱钟书先生的<论文人>胡改的.聊搏一笑,文责不负.程序员是可嘉奖的,因为他虚心,知道上进,并不拿身分,并不安本分.真的,程序员对于自己,有时比旁人对于 ...

  6. 让所有浏览器包括IE6即支持最大宽度又支持最小宽度。

    让所有浏览器包括IE6即支持最大宽度又支持最小宽度. _height  _width:针对ie6 css hack .yangshi{max-width:620px;min-width:1px;_wi ...

  7. C#静态类和静态成员

    1. 静态类 1.1 简介  静态类和类成员用于创建无需创建类的实例就能够访问的数据和函数. 静态类成员可用于分离独立于任何对象标识的数据和行为:无论对象发生什么更改,这些数据和函数都不会随之变化. ...

  8. magento问题集3

    MISSING LANGUAGE FILES OR DIRECTORIES A:已经装了俄语包,也是russian目录,在前台也可以用.但是在后台最上面总是显示MISSING LANGUAGE FIL ...

  9. magento的robots文件编写和判断是否是一个导航分类页面

    magento是网店系统,我们突出的是我们的产品,所以,有很多路径我们不想让搜索引擎索引到,所以我们需要用robots文件进行限制 下面是麦神magento的robots.txt里面的内容,因为很多u ...

  10. highcharts 的使用实例:待写

    http://www.hcharts.cn/demo/index.php 方法一:在Axis(包括xAxis和yAxis)有一个属性tickInterval,number类型,表示间隔,也就是间隔多少 ...