307. Range Sum Query - Mutable
题目:
Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive.
The update(i, val) function modifies nums by updating the element at index i to val.
Example:
Given nums = [1, 3, 5] sumRange(0, 2) -> 9
update(1, 2)
sumRange(0, 2) -> 8
Note:
- The array is only modifiable by the update function.
- You may assume the number of calls to update and sumRange function is distributed evenly.
链接: http://leetcode.com/problems/range-sum-query-mutable/
题解:
这应该算是Range Query的经典题目之一了。也是通过这道题我第一次接触到了Segment Tree,也对Fenwick Tree有了一点了解。下面是用Segment Tree来做的。 Segment Tree线段树每一个节点都是一段线段,有start和end,然后还可以有其他的值,比如区间和sum,区间最大值max,区间最小值min。我们可以用自底向上构建二叉树的方式构建Segment Tree,这个过程也有点类似于Bottom-up的merge sort,思想也是Divide and Conquer。完毕之后就可以在O(logn)的时间update,或者得到range Sum。其实更好的方法是使用Fenwick Tree, Fenwick Tree(Binary Indexed Tree)在处理Range Query真的是一绝,构造简练,原理也精妙,还可以扩展到多维,一定要好好学一学。
Time Complexity - O(n) build, O(logn) update, O(logn) rangeSum, Space Complexity - O(n)
public class NumArray {
private class SegmentTreeNode {
public int start;
public int end;
public int sum;
public SegmentTreeNode left, right;
public SegmentTreeNode(int start, int end) {
this.start = start;
this.end = end;
this.sum = 0;
}
}
private SegmentTreeNode root;
public NumArray(int[] nums) {
this.root = buildTree(nums, 0, nums.length - 1);
}
public void update(int i, int val) {
update(root, i, val);
}
private void update(SegmentTreeNode node, int position, int val) {
if(node.start == position && node.end == position) {
node.sum = val;
return;
}
int mid = node.start + (node.end - node.start) / 2;
if(position <= mid) {
update(node.left, position, val);
} else {
update(node.right, position, val);
}
node.sum = node.left.sum + node.right.sum;
}
public int sumRange(int i, int j) {
return sumRange(root, i, j);
}
private int sumRange(SegmentTreeNode node, int lo, int hi) {
if(node.start == lo && node.end == hi) {
return node.sum;
}
int mid = node.start + (node.end - node.start) / 2;
if(hi <= mid) {
return sumRange(node.left, lo, hi);
} else if (lo > mid) {
return sumRange(node.right, lo, hi);
} else {
return sumRange(node.left, lo, mid) + sumRange(node.right, mid + 1, hi);
}
}
private SegmentTreeNode buildTree(int[] nums, int lo, int hi) {
if(lo > hi) {
return null;
} else {
SegmentTreeNode node = new SegmentTreeNode(lo, hi);
if(lo == hi) {
node.sum = nums[lo];
} else {
int mid = lo + (hi - lo) / 2;
node.left = buildTree(nums, lo, mid);
node.right = buildTree(nums, mid + 1, hi);
node.sum = node.left.sum + node.right.sum;
}
return node;
}
}
}
// Your NumArray object will be instantiated and called as such:
// NumArray numArray = new NumArray(nums);
// numArray.sumRange(0, 1);
// numArray.update(1, 10);
// numArray.sumRange(1, 2);
Fenwick Tree: (Binary Indexed Tree) (树状数组)
很有意思的构建,以数组nums = {1, 2, 3, 4, 5, 6, 7, 8}为例,这个数组长度为8。 跟dynamic programming的预处理很像,我们先建立一个长度为nums.length + 1 = 9的数组BIT。接下来遍历数组nums,对BIT数组进行update(i + 1, nums[i])。这里BIT数组每个值BIT[i]代表nums数组里在i之前的部分元素和。原理是像自然数可以被表示为2n的和一样,把nums数组里到0到i的sum表示成2n的和,从而导致update和rangeSum都可以用O(logn)的时间求出来。这里构建的时候可以有几种写法,主要就是利用当前i的least significante 1来确定到底BIT[i]要保存多少原数组的值。这里借用algorithmist的原话"Every index in the cumulative sum array, say i, is responsible for the cumulative sum from the index i to (i - (1<<r) + 1)。" 构建过程中可以用 (i & -i)来找到least significate 1,之后来进行i = i + (i & -i)来尝试从小到大计算下一个BIT数组中被影响的元素。 而rangeSum的时候则使用i = i - (i & -i)来从大到小查找从0到i - 1的sum。
构建过程 - update, 给定数组nums = {1,2, 3, 4, 5, 6, 7, 8}
BIT[0] = 0
BIT[1] = nums[0] = 1 = 1
BIT[2] = nums[0] + nums[1] = 1 + 2 = 3
BIT[3] = nums[2] = 3 = 3
BIT[4] = nums[0] + nums[1] + nums[2] + nums[3] = 1+ 2 + 3 + 4 = 10
BIT[5] = nums[4] = 5 = 5
BIT[6] = nums[4] + nums[5] = 5 + 6 = 11
BIT[7] = nums[6] = 7 = 7
BIT[8] = nums[0] + nums[1] + nums[2] + nums[3] + nums[4] + nums[5] + nums[6] + nums[7] = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 36
求Sum过程, 通过 sum = BIT[i + 1]; i = i - (i & -i); 从大到小迭代来计算。
sum(0) = BIT[1]
sum(1) = BIT[2]
sum(2) = BIT[3] + BIT[2]
sum(3) = BIT[4]
sum(4) = BIT[5] + BIT[4]
sum(5) = BIT[6] + BIT[4]
sum(6) = BIT[7] + BIT[6] + BIT[4]
sum(7) = BIT[8]
得到sum(i)以后就可以相减来计算range sum了。
Time Complexity - O(nlogn) build, O(logn) update, O(logn) rangeSum, Space Complexity - O(n)
public class NumArray {
private int BIT[]; // Binary Indexed Tree = Fenwick Tree
private int[] nums;
public NumArray(int[] nums) {
BIT = new int[nums.length + 1];
for(int i = 0; i < nums.length; i++) {
init(i + 1, nums[i]);
}
this.nums = nums;
}
private void init(int i, int val) {
while(i < BIT.length) {
BIT[i] += val;
i = i + (i & -i);
}
}
public void update(int i, int val) {
int delta = val - nums[i];
nums[i] = val;
init(i + 1, delta);
}
public int sumRange(int i, int j) {
return getSum(j + 1) - getSum(i);
}
private int getSum(int i) {
int sum = 0;
while(i > 0) {
sum += BIT[i];
i = i - (i & -i);
}
return sum;
}
}
题外话: 今天去NYU图书馆自习,正值考期,人山人海的。我带了电脑却忘记带插座,无奈只能用Java 在线的编译器https://www.compilejava.net/, 不过这个真的还挺好用,除了不能debug,其他都可以,nice。晚上吃了Hakata Tonton,4个人大概人均$50+,并没有想象的那么好吃,以后还是要攒机会去日本玩。 刷题群里大家对Heapify有了热烈的讨论,我自己认为Heapify主要有两种,Bottom-up (swim)和Top-down(sink)。也要复习一下Priority Queue的implementation。要多看Sedgewick的课件和sample code才行。 在GitHub发现有个人叫indy256,实现了好多好多高级数据结构,有2d-fenwick tree,以及O(n)的Suffix Tree。大牛和普通人的距离真的好遥远,我还是继续努力。
二刷:
暂时只用了segment tree。 Fenwick Tree以后再理解。
Java:
Segment Tree:
public class NumArray {
private SegmentTreeNode root;
private int[] nums;
public NumArray(int[] nums) {
this.nums = nums;
this.root = buildTree(0, nums.length - 1);
}
void update(int i, int val) {
update(root, i, val);
}
private void update(SegmentTreeNode node, int pos, int val) {
if (node == null) return;
if (node.start == pos && node.end == pos) {
node.val = val;
nums[pos] = val;
return;
}
int mid = node.start + (node.end - node.start) / 2;
if (pos <= mid) {
update(node.left, pos, val);
} else {
update(node.right, pos, val);
}
node.val = node.left.val + node.right.val;
}
public int sumRange(int i, int j) {
return sumRange(root, i, j);
}
private int sumRange(SegmentTreeNode node, int lo, int hi) {
if (lo > hi) return 0;
if (node.start == lo && node.end == hi) return node.val;
int mid = node.start + (node.end - node.start) / 2;
if (hi <= mid) {
return sumRange(node.left, lo, hi);
} else if (lo > mid) {
return sumRange(node.right, lo, hi);
} else {
return sumRange(node.left, lo, mid) + sumRange(node.right, mid + 1, hi);
}
}
private SegmentTreeNode buildTree(int lo, int hi) {
if (lo > hi) return null;
SegmentTreeNode node = new SegmentTreeNode(lo, hi);
if (lo == hi) {
node.val = nums[lo];
} else {
int mid = lo + (hi - lo) / 2;
node.left = buildTree(lo, mid);
node.right = buildTree(mid + 1, hi);
node.val = node.left.val + node.right.val;
}
return node;
}
private class SegmentTreeNode {
int start;
int end;
int val;
SegmentTreeNode left, right;
public SegmentTreeNode(int start, int end) {
this.start = start;
this.end = end;
this.val = 0;
}
}
}
// Your NumArray object will be instantiated and called as such:
// NumArray numArray = new NumArray(nums);
// numArray.sumRange(0, 1);
// numArray.update(1, 10);
// numArray.sumRange(1, 2);
Reference:
https://www.compilejava.net/
http://algs4.cs.princeton.edu/93intersection/IntervalST.java.html
https://leetcode.com/discuss/70202/17-ms-java-solution-with-segment-tree
http://www.geeksforgeeks.org/segment-tree-set-1-sum-of-given-range/
http://algs4.cs.princeton.edu/99misc/SegmentTree.java.html/
https://leetcode.com/discuss/70272/solution-using-buckets-updating-for-query-the-worst-case-fast
https://leetcode.com/discuss/74222/java-using-binary-indexed-tree-with-clear-explanation
https://leetcode.com/discuss/70278/simple-recursive-java-solution
http://algs4.cs.princeton.edu/99misc/FenwickTree.java.html
https://web.stanford.edu/class/cs97si/03-data-structures.pdf
https://en.wikipedia.org/wiki/Fenwick_tree
http://algs4.cs.princeton.edu/99misc/FenwickTree.java.html
http://cs.nyu.edu/courses/spring14/CSCI-UA.0480-004/Lecture4.pdf
https://www.topcoder.com/community/data-science/data-science-tutorials/
http://www.algorithmist.com/index.php/Fenwick_tree
https://leetcode.com/discuss/70273/java-7ms-binary-index-tree-solution
https://leetcode.com/discuss/72658/java-solution-with-binary-indexed-tree-beats-81-95%25
https://leetcode.com/discuss/74222/java-using-binary-indexed-tree-with-clear-explanation
https://leetcode.com/discuss/70311/11-ms-java-binary-tree
https://leetcode.com/discuss/70191/share-my-c-solution-1700ms-using-tree-array
https://leetcode.com/discuss/70293/java-binary-indexed-tree
https://sites.google.com/site/indy256/algo_cpp/fenwick_tree
https://sites.google.com/site/indy256/algo/fenwick_tree_2d
http://www.cnblogs.com/grandyang/p/4985506.html
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=A4ADC19B8D7E3A202944A808F5840D21?doi=10.1.1.14.8917&rep=rep1&type=pdf
http://arxiv.org/pdf/1311.6093v5.pdf
https://leetcode.com/discuss/72658/java-solution-with-binary-indexed-tree-beats-81-95%25
307. Range Sum Query - Mutable的更多相关文章
- 【刷题-LeetCode】307. Range Sum Query - Mutable
Range Sum Query - Mutable Given an integer array nums, find the sum of the elements between indices ...
- [LeetCode] 307. Range Sum Query - Mutable 区域和检索 - 可变
Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive ...
- leetcode@ [307] Range Sum Query - Mutable / 线段树模板
Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive ...
- [LeetCode] 307. Range Sum Query - Mutable 解题思路
Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive ...
- LeetCode - 307. Range Sum Query - Mutable
Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive ...
- 307. Range Sum Query - Mutable查询求和的范围(可变)
[抄题]: Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inc ...
- leetcode 307. Range Sum Query - Mutable(树状数组)
Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive ...
- 【leetcode】307. Range Sum Query - Mutable
题目如下: 解题思路:就三个字-线段树.这个题目是线段树用法最经典的场景. 代码如下: class NumArray(object): def __init__(self, nums): " ...
- [Leetcode Week16]Range Sum Query - Mutable
Range Sum Query - Mutable 题解 原创文章,拒绝转载 题目来源:https://leetcode.com/problems/range-sum-query-mutable/de ...
随机推荐
- Liunx0000(初步认识)
都要放假了,学习一下吧,毕竟还有课设,虽然我真的懒得看Linux,不想接触这破玩意!各应人的东西! 一.发展趋势 1\无操作系统阶段20s60 2\简单操作系统阶段 3\试试操作系统阶段 4\面向In ...
- String、StringBuilder、StringBuffer
String String ...
- python-转换成exe文件(py2exe)
一.简介: py2exe是一个将python脚本转换成windows上的可独立执行的可执行程序(*.exe)的工具,这样,你就可以不用装python而在windows系统上运行这个可执行程序.py2e ...
- Effective Java总结
规则1. 用静态工厂方法代替构造器 例子: public class Example { } public class StaticFactory { //valueOf/Of/getInstance ...
- 响应式设计Responsinator工具推荐
from:http://www.25xt.com/allcode/4066.html 原文推荐了5种,感觉有用的吧就这一种,所以收藏过来. Responsinator工具的好处Responsinato ...
- [haoi2010]订货 最小费用流
这道题oj上的标签是动态规划,但我想不出来动态规划怎么搞,空间不爆,时间也要爆的: 好的,不扯淡,此题正常做法是最小费用流: 这道题我写了两遍,为什么呢?原因是第一次写的时候,不会写费用流,又恰好没带 ...
- 用CSS3制作的旋转六面体动画
这是用CSS3制作的旋转的六面体 请用火狐或谷歌浏览器预览,有些旋转角度做的不够好,请大神指教 top bottom left right front back
- Virtualbox网络设置和无UI启动
因工作需要,在Macbook上安装Ubuntu 14.04.2虚拟机,需要ssh连接操作. 一番查找资料,实践后可以正常工作了,记录一些信息以备用 无UI启动虚拟机,可使用以下命令: VBoxMana ...
- mysql存储过程和函数使用实例
1.需求:根据输入的年份,月份,和当前系统的年份比较,不满1年按1年计算,多出1年11个月也按1年计算. 2.计算得出来的使用年份,计算车辆残值. 3.存储过程 DELIMITER $$ USE `d ...
- Sqli-labs less 65
Less-65 $id = '"'.$id.'"'; // Querry DB to get the correct output $sql="SELECT * FROM ...