Black Box

Time Limit: 1000MS Memory Limit: 10000K

Total Submissions: 8754 Accepted: 3599

Description

Our Black Box represents a primitive database. It can save an integer array and has a special i variable. At the initial moment Black Box is empty and i equals 0. This Black Box processes a sequence of commands (transactions). There are two types of transactions:

ADD (x): put element x into Black Box;

GET: increase i by 1 and give an i-minimum out of all integers containing in the Black Box. Keep in mind that i-minimum is a number located at i-th place after Black Box elements sorting by non- descending.

Let us examine a possible sequence of 11 transactions:

Example 1

N Transaction i Black Box contents after transaction Answer

  (elements are arranged by non-descending)

1 ADD(3) 0 3

2 GET 1 3 3

3 ADD(1) 1 1, 3

4 GET 2 1, 3 3

5 ADD(-4) 2 -4, 1, 3

6 ADD(2) 2 -4, 1, 2, 3

7 ADD(8) 2 -4, 1, 2, 3, 8

8 ADD(-1000) 2 -1000, -4, 1, 2, 3, 8

9 GET 3 -1000, -4, 1, 2, 3, 8 1

10 GET 4 -1000, -4, 1, 2, 3, 8 2

11 ADD(2) 4 -1000, -4, 1, 2, 2, 3, 8

It is required to work out an efficient algorithm which treats a given sequence of transactions. The maximum number of ADD and GET transactions: 30000 of each type.

Let us describe the sequence of transactions by two integer arrays:

  1. A(1), A(2), …, A(M): a sequence of elements which are being included into Black Box. A values are integers not exceeding 2 000 000 000 by their absolute value, M <= 30000. For the Example we have A=(3, 1, -4, 2, 8, -1000, 2).

  2. u(1), u(2), …, u(N): a sequence setting a number of elements which are being included into Black Box at the moment of first, second, … and N-transaction GET. For the Example we have u=(1, 2, 6, 6).

The Black Box algorithm supposes that natural number sequence u(1), u(2), …, u(N) is sorted in non-descending order, N <= M and for each p (1 <= p <= N) an inequality p <= u(p) <= M is valid. It follows from the fact that for the p-element of our u sequence we perform a GET transaction giving p-minimum number from our A(1), A(2), …, A(u(p)) sequence.

Input

Input contains (in given order): M, N, A(1), A(2), …, A(M), u(1), u(2), …, u(N). All numbers are divided by spaces and (or) carriage return characters.

Output

Write to the output Black Box answers sequence for a given sequence of transactions, one number each line.

Sample Input

7 4

3 1 -4 2 8 -1000 2

1 2 6 6

Sample Output

3

3

1

2

Source

Northeastern Europe 1996

题意:共有两种操作,一是添加一个元素,二是输出第i小的元素;

输入n,m.n代表有n个要添加的元素,m代表操作的个数,

在m个操作中a[i]=v,表示在第v次添加的时候输出第i小的元素

方法:用两个优先队列,q2从小到大出对,q1从大到小出对,q1储存的是前i-1小的数据,所以q2的队头就是第i小的数据;

#include <map>
#include <list>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
#define eps 1e-9
#define LL long long
#define PI acos(-1.0)
#define INF 0x3f3f3f3f
#define CRR fclose(stdin)
#define CWW fclose(stdout)
#define RR freopen("input.txt","r",stdin)
#pragma comment(linker, "/STACK:102400000")
#define WW freopen("output.txt","w",stdout) const int MAX = 30010;
LL a[MAX];
int b;
int main()
{
int n,m;
while(~scanf("%d %d",&n,&m))
{
priority_queue<LL >q1;
priority_queue<LL,vector<LL>,greater<LL> >q2; for(int i=1; i<=n; i++)
{
scanf("%lld",&a[i]);
}
int k=1;
for(int i=1; i<=m; i++)
{
scanf("%I64d",&b);
for(; k<=b; k++)
{
if(q1.empty()||q1.top()<a[k])
{
q2.push(a[k]);
}
else
{
q1.push(a[k]);
LL ans=q1.top();
q1.pop();
q2.push(ans);
}
}
LL ans=q2.top();
q2.pop();
printf("%I64d\n",ans);
q1.push(ans);
}
}
return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

Black Box 分类: POJ 栈和队列 2015-08-05 14:07 2人阅读 评论(0) 收藏的更多相关文章

  1. IIS上虚拟站点的web.config与主站点的web.config冲突解决方法 分类: ASP.NET 2015-06-15 14:07 60人阅读 评论(0) 收藏

    IIS上在主站点下搭建虚拟目录后,子站点中的<system.web>节点与主站点的<system.web>冲突解决方法: 在主站点的<system.web>上一级添 ...

  2. Hdu 1009 FatMouse' Trade 分类: Translation Mode 2014-08-04 14:07 74人阅读 评论(0) 收藏

    FatMouse' Trade Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  3. MS SQL数据批量备份还原(适用于MS SQL 2005+) 分类: SQL Server 数据库 2015-03-10 14:32 103人阅读 评论(0) 收藏

    我们知道通过Sql代理,可以实现数据库的定时备份功能:当数据库里的数据库很多时,备份一个数据库需要建立对应的定时作业,相对来说比较麻烦: 还好,微软自带的osql工具,比较实用,通过在命令行里里输入命 ...

  4. THE DRUNK JAILER 分类: POJ 2015-06-10 14:50 13人阅读 评论(0) 收藏

    THE DRUNK JAILER Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 24918   Accepted: 1563 ...

  5. A Plug for UNIX 分类: POJ 图论 函数 2015-08-10 14:18 2人阅读 评论(0) 收藏

    A Plug for UNIX Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 14786 Accepted: 4994 Desc ...

  6. Dungeon Master 分类: 搜索 POJ 2015-08-09 14:25 4人阅读 评论(0) 收藏

    Dungeon Master Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 20995 Accepted: 8150 Descr ...

  7. 欧拉回路-Door Man 分类: 图论 POJ 2015-08-06 10:07 4人阅读 评论(0) 收藏

    Door Man Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 2476 Accepted: 1001 Description ...

  8. Flip Game 分类: POJ 2015-06-15 14:59 22人阅读 评论(0) 收藏

    Flip Game Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 33519   Accepted: 14642 Descr ...

  9. Dirichlet's Theorem on Arithmetic Progressions 分类: POJ 2015-06-12 21:07 7人阅读 评论(0) 收藏

    Dirichlet's Theorem on Arithmetic Progressions Time Limit: 1000MS   Memory Limit: 65536K Total Submi ...

随机推荐

  1. leetcode98 Validate Binary Search Tree

    题目: Given a binary tree, determine if it is a valid binary search tree (BST). Assume a BST is define ...

  2. Leetcode: Longest Absolute File Path

    Suppose we abstract our file system by a string in the following manner: The string "dir\n\tsub ...

  3. 转:python webdriver API 之对话框处理

    页面上弹出的对话框是自动化测试经常会遇到的一个问题:很多情况下对话框是一个 iframe,如上一节中介绍的例子,处理起来稍微有点麻烦:但现在很多前端框架的对话框是 div 形式的,这就让我们的处理变得 ...

  4. 树链剖分(单点更新,求区间最值,区间求和Bzoj1036)

    1036: [ZJOI2008]树的统计Count Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 5759  Solved: 2383 [Submi ...

  5. Spring之我见

    Spring 是什么(1) •Spring 是一个开源框架. •Spring 为简化企业级应用开发而生. 使用 Spring 可以使简单的 JavaBean 实现以前只有 EJB 才能实现的功能. • ...

  6. JSon_零基础_005_将po(bean)对象转换为JSon格式的对象字符串,返回给界面

    将po(bean)对象转换为JSon格式的对象字符串,返回给界面 导入jar包: 编写po(bean)类: package com.west.webcourse.po; /** * 第01步:编写be ...

  7. Java泛型01--任意数组中两元素交换

    package com.zl.generic; /** * 交换“任意”数组 中两个元素 */ public class GenericSwapArray { public static void m ...

  8. 夺命雷公狗---node.js---1node的下载和安装

    node目前有两个网站,一个是英文的,一个是中文的,,左边这个是长期有效版本,右边的是最新版本,在下面可以很清晰的看得到node的英文网站更新速度是比中文网站上的快的多 我们用来测试的版本是windo ...

  9. 什么是商业智能BI和实施BI的解决方案【转】

    商业智能,或BI,是一种统称,泛指用于对一个企业的原始数据进行分析的各种各样的软件系统.商业智能(BI)是由若干相关的活动组成的领域,包括数据挖掘,在线分析处理,查询和报表. 企业用商业智能(BI)来 ...

  10. delphi 与 C++的基本语法区别

    [1]“=”符号 (1)“=”作为比较符.但是,当定义const常量时,“=”又表示赋值符号.而“:=”作为赋值符号. (2)“=”只表示赋值符号 [2]结构体 (1)record 作为结构体 (2) ...