Python实现SVM(支持向量机)
Python实现SVM(支持向量机)
运行环境
- Pyhton3
- numpy(科学计算包)
- matplotlib(画图所需,不画图可不必)
计算过程
st=>start: 开始
e=>end: 结束
op1=>operation: 读入数据
op2=>operation: 格式化数据
cond=>condition: 是否达到迭代次数
op3=>operation: 寻找超平面分割最小间隔
ccond=>conditon: 数据是否改变
op4=>operation: 输出结果
st->op1->op2->cond
cond(yes)->op4->e
cond(no)->op3
啊,这markdown flow好难用,我决定就画到这吧=。=
输入样例
/* testSet.txt */
3.542485 1.977398 -1
3.018896 2.556416 -1
7.551510 -1.580030 1
2.114999 -0.004466 -1
8.127113 1.274372 1
7.108772 -0.986906 1
8.610639 2.046708 1
2.326297 0.265213 -1
3.634009 1.730537 -1
0.341367 -0.894998 -1
3.125951 0.293251 -1
2.123252 -0.783563 -1
0.887835 -2.797792 -1
7.139979 -2.329896 1
1.696414 -1.212496 -1
8.117032 0.623493 1
8.497162 -0.266649 1
4.658191 3.507396 -1
8.197181 1.545132 1
1.208047 0.213100 -1
1.928486 -0.321870 -1
2.175808 -0.014527 -1
7.886608 0.461755 1
3.223038 -0.552392 -1
3.628502 2.190585 -1
7.407860 -0.121961 1
7.286357 0.251077 1
2.301095 -0.533988 -1
-0.232542 -0.547690 -1
3.457096 -0.082216 -1
3.023938 -0.057392 -1
8.015003 0.885325 1
8.991748 0.923154 1
7.916831 -1.781735 1
7.616862 -0.217958 1
2.450939 0.744967 -1
7.270337 -2.507834 1
1.749721 -0.961902 -1
1.803111 -0.176349 -1
8.804461 3.044301 1
1.231257 -0.568573 -1
2.074915 1.410550 -1
-0.743036 -1.736103 -1
3.536555 3.964960 -1
8.410143 0.025606 1
7.382988 -0.478764 1
6.960661 -0.245353 1
8.234460 0.701868 1
8.168618 -0.903835 1
1.534187 -0.622492 -1
9.229518 2.066088 1
7.886242 0.191813 1
2.893743 -1.643468 -1
1.870457 -1.040420 -1
5.286862 -2.358286 1
6.080573 0.418886 1
2.544314 1.714165 -1
6.016004 -3.753712 1
0.926310 -0.564359 -1
0.870296 -0.109952 -1
2.369345 1.375695 -1
1.363782 -0.254082 -1
7.279460 -0.189572 1
1.896005 0.515080 -1
8.102154 -0.603875 1
2.529893 0.662657 -1
1.963874 -0.365233 -1
8.132048 0.785914 1
8.245938 0.372366 1
6.543888 0.433164 1
-0.236713 -5.766721 -1
8.112593 0.295839 1
9.803425 1.495167 1
1.497407 -0.552916 -1
1.336267 -1.632889 -1
9.205805 -0.586480 1
1.966279 -1.840439 -1
8.398012 1.584918 1
7.239953 -1.764292 1
7.556201 0.241185 1
9.015509 0.345019 1
8.266085 -0.230977 1
8.545620 2.788799 1
9.295969 1.346332 1
2.404234 0.570278 -1
2.037772 0.021919 -1
1.727631 -0.453143 -1
1.979395 -0.050773 -1
8.092288 -1.372433 1
1.667645 0.239204 -1
9.854303 1.365116 1
7.921057 -1.327587 1
8.500757 1.492372 1
1.339746 -0.291183 -1
3.107511 0.758367 -1
2.609525 0.902979 -1
3.263585 1.367898 -1
2.912122 -0.202359 -1
1.731786 0.589096 -1
2.387003 1.573131 -1
代码实现
# -*- coding: utf-8 -*-
__author__ = 'Wsine'
from numpy import *
import matplotlib.pyplot as plt
import operator
import time
def loadDataSet(fileName):
dataMat = []
labelMat = []
with open(fileName) as fr:
for line in fr.readlines():
lineArr = line.strip().split('\t')
dataMat.append([float(lineArr[0]), float(lineArr[1])])
labelMat.append(float(lineArr[2]))
return dataMat, labelMat
def selectJrand(i, m):
j = i
while (j == i):
j = int(random.uniform(0, m))
return j
def clipAlpha(aj, H, L):
if aj > H:
aj = H
if L > aj:
aj = L
return aj
class optStruct:
def __init__(self, dataMatIn, classLabels, C, toler):
self.X = dataMatIn
self.labelMat = classLabels
self.C = C
self.tol = toler
self.m = shape(dataMatIn)[0]
self.alphas = mat(zeros((self.m, 1)))
self.b = 0
self.eCache = mat(zeros((self.m, 2)))
def calcEk(oS, k):
fXk = float(multiply(oS.alphas, oS.labelMat).T * (oS.X * oS.X[k, :].T)) + oS.b
Ek = fXk - float(oS.labelMat[k])
return Ek
def selectJ(i, oS, Ei):
maxK = -1
maxDeltaE = 0
Ej = 0
oS.eCache[i] = [1, Ei]
validEcacheList = nonzero(oS.eCache[:, 0].A)[0]
if (len(validEcacheList)) > 1:
for k in validEcacheList:
if k == i:
continue
Ek = calcEk(oS, k)
deltaE = abs(Ei - Ek)
if (deltaE > maxDeltaE):
maxK = k
maxDeltaE = deltaE
Ej = Ek
return maxK, Ej
else:
j = selectJrand(i, oS.m)
Ej = calcEk(oS, j)
return j, Ej
def updateEk(oS, k):
Ek = calcEk(oS, k)
oS.eCache[k] = [1, Ek]
def innerL(i, oS):
Ei = calcEk(oS, i)
if ((oS.labelMat[i] * Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i] * Ei > oS.tol) and (oS.alphas[i] > 0)):
j, Ej = selectJ(i, oS, Ei)
alphaIold = oS.alphas[i].copy()
alphaJold = oS.alphas[j].copy()
if (oS.labelMat[i] != oS.labelMat[j]):
L = max(0, oS.alphas[j] - oS.alphas[i])
H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
else:
L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
H = min(oS.C, oS.alphas[j] + oS.alphas[i])
if (L == H):
# print("L == H")
return 0
eta = 2.0 * oS.X[i, :] * oS.X[j, :].T - oS.X[i, :] * oS.X[i, :].T - oS.X[j, :] * oS.X[j, :].T
if eta >= 0:
# print("eta >= 0")
return 0
oS.alphas[j] -= oS.labelMat[j] * (Ei - Ej) / eta
oS.alphas[j] = clipAlpha(oS.alphas[j], H, L)
updateEk(oS, j)
if (abs(oS.alphas[j] - alphaJold) < 0.00001):
# print("j not moving enough")
return 0
oS.alphas[i] += oS.labelMat[j] * oS.labelMat[i] * (alphaJold - oS.alphas[j])
updateEk(oS, i)
b1 = oS.b - Ei - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.X[i, :] * oS.X[i, :].T - oS.labelMat[j] * (oS.alphas[j] - alphaJold) * oS.X[i, :] * oS.X[j, :].T
b2 = oS.b - Ei - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.X[i, :] * oS.X[j, :].T - oS.labelMat[j] * (oS.alphas[j] - alphaJold) * oS.X[j, :] * oS.X[j, :].T
if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]):
oS.b = b1
elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]):
oS.b = b2
else:
oS.b = (b1 + b2) / 2.0
return 1
else:
return 0
def smoP(dataMatIn, classLabels, C, toler, maxIter, kTup=('lin', 0)):
"""
输入:数据集, 类别标签, 常数C, 容错率, 最大循环次数
输出:目标b, 参数alphas
"""
oS = optStruct(mat(dataMatIn), mat(classLabels).transpose(), C, toler)
iterr = 0
entireSet = True
alphaPairsChanged = 0
while (iterr < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):
alphaPairsChanged = 0
if entireSet:
for i in range(oS.m):
alphaPairsChanged += innerL(i, oS)
# print("fullSet, iter: %d i:%d, pairs changed %d" % (iterr, i, alphaPairsChanged))
iterr += 1
else:
nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
for i in nonBoundIs:
alphaPairsChanged += innerL(i, oS)
# print("non-bound, iter: %d i:%d, pairs changed %d" % (iterr, i, alphaPairsChanged))
iterr += 1
if entireSet:
entireSet = False
elif (alphaPairsChanged == 0):
entireSet = True
# print("iteration number: %d" % iterr)
return oS.b, oS.alphas
def calcWs(alphas, dataArr, classLabels):
"""
输入:alphas, 数据集, 类别标签
输出:目标w
"""
X = mat(dataArr)
labelMat = mat(classLabels).transpose()
m, n = shape(X)
w = zeros((n, 1))
for i in range(m):
w += multiply(alphas[i] * labelMat[i], X[i, :].T)
return w
def plotFeature(dataMat, labelMat, weights, b):
dataArr = array(dataMat)
n = shape(dataArr)[0]
xcord1 = []; ycord1 = []
xcord2 = []; ycord2 = []
for i in range(n):
if int(labelMat[i]) == 1:
xcord1.append(dataArr[i, 0])
ycord1.append(dataArr[i, 1])
else:
xcord2.append(dataArr[i, 0])
ycord2.append(dataArr[i, 1])
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
ax.scatter(xcord2, ycord2, s=30, c='green')
x = arange(2, 7.0, 0.1)
y = (-b[0, 0] * x) - 10 / linalg.norm(weights)
ax.plot(x, y)
plt.xlabel('X1'); plt.ylabel('X2')
plt.show()
def main():
trainDataSet, trainLabel = loadDataSet('testSet.txt')
b, alphas = smoP(trainDataSet, trainLabel, 0.6, 0.0001, 40)
ws = calcWs(alphas, trainDataSet, trainLabel)
print("ws = \n", ws)
print("b = \n", b)
plotFeature(trainDataSet, trainLabel, ws, b)
if __name__ == '__main__':
start = time.clock()
main()
end = time.clock()
print('finish all in %s' % str(end - start))
输出样例
ws =
[[ 0.65307162]
[-0.17196128]]
b =
[[-2.89901748]]
finish all in 2.5683854014099112

绘图方面还存在一些bug。
Python实现SVM(支持向量机)的更多相关文章
- python机器学习之支持向量机SVM
支持向量机SVM(Support Vector Machine) 关注公众号"轻松学编程"了解更多. [关键词]支持向量,最大几何间隔,拉格朗日乘子法 一.支持向量机的原理 Sup ...
- 机器学习实战 - 读书笔记(06) – SVM支持向量机
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习笔记,这次是第6章:SVM 支持向量机. 支持向量机不是很好被理解,主要是因为里面涉及到了许多数学知 ...
- 基于Python使用SVM识别简单的字符验证码的完整代码开源分享
关键字:Python,SVM,字符验证码,机器学习,验证码识别 1 概述 基于Python使用SVM识别简单的验证字符串的完整代码开源分享. 因为目前有了更厉害的新技术来解决这类问题了,但是本文作 ...
- SVM支持向量机的基本原理
SVM支持向量机的基本原理 对于很多分类问题,例如最简单的,一个平面上的两类不同的点,如何将它用一条直线分开?在平面上我们可能无法实现,但是如果通过某种映射,将这些点映射到其它空间(比如说球面上等), ...
- 6-11 SVM支持向量机2
SVM支持向量机的核:线性核.进行预测的时候我们需要把正负样本的数据装载在一起,同时我们label标签也要把正负样本的数据全部打上一个label. 第四步,开始训练和预测.ml(machine lea ...
- 6-10 SVM支持向量机1
都是特征加上分类器.还将为大家介绍如何对这个数据进行训练.如何训练得到这样一组数据. 其实SVM支持向量机,它的本质仍然是一个分类器.既然是一个分类器,它就具有分类的功能.我们可以使用一条直线来完成分 ...
- SVM 支持向量机算法-实战篇
公号:码农充电站pro 主页:https://codeshellme.github.io 上一篇介绍了 SVM 的原理和一些基本概念,本篇来介绍如何用 SVM 处理实际问题. 1,SVM 的实现 SV ...
- Python中的支持向量机SVM的使用(有实例)
除了在Matlab中使用PRTools工具箱中的svm算法,Python中一样可以使用支持向量机做分类.因为Python中的sklearn也集成了SVM算法. 一.简要介绍一下sklearn Scik ...
- SVM支持向量机推导,工具介绍及python实现
支持向量机整理 参考: Alexandre KOWALCZYK大神的SVM Tutorial http://blog.csdn.net/alvine008/article/details/909711 ...
随机推荐
- 纯CSS气泡框实现方法探究
气泡框(或者提示框)是网页中一种很常见的元素,大多用来展示提示信息,如下图所示: 拆分来看,形如这种气泡框无外乎就是一个矩形框+一个指示方向的三角形小箭头,要制作出这样的气泡框,如果解决了三角形小箭头 ...
- zedboard如何从PL端控制DDR读写(二)——AXI总线
虽然Xilinx已经将和AXI时序有关的细节都封装起来,给出了官方IP和向导生成自定义IP,用户只需要关注自己的逻辑实现,但是还是有必要简单了解一下AXI的时序,毕竟咱是做硬件设计的. AXI(Ad ...
- angular 指令@、=、&的用法和区别
1.指令作用域中的@ 作用是把当前属性作为字符串传递. html: <div ng-controller="MyCtrl"> <drink water=" ...
- _func_
__func__标识符 引用:http://blog.csdn.net/zhoujunyi/article/details/1572325 __func__是C99标准里面预定义标识符, 它是一个st ...
- 用于MySql的SqlHelper
用于MySql的SqlHelper /// <summary> /// Title :MySqlHelper /// Author :WinterT /// Date :2015-1-8 ...
- C puzzles详解【9-12题】
第九题 #include <stdio.h> int main() { float f=0.0f; int i; ;i<;i++) f = f + 0.1f; if(f == 1.0 ...
- 显示当前一个礼拜的日期 new Date()
显示这一礼拜的日期 html: <div class="month"></div> <table> <tr> <th>日 ...
- mysql数据库delete数据时不支持表别名
今天在帮同事查看一条删除的SQL语句执行出错的问题 SQL语句如下: 1 DELETE FROM LEAD_SYSTEM_MENU_ORG_REF as t WHERE t.resourceid='4 ...
- DOCTYPE对$(window).height()取值的影响
前言:公司项目需要用到一个弹框垂直居中,网上类似的垂直居中弹出层大同小异,因为项目是基于Jquery 下的,所以用$(window).height()-layer.height())/2 +$(doc ...
- 网站瓶颈分析—MYSQL性能分析
一.关于慢查询设置和分析 查找慢查询参数 mysql> show variables like 'long%'; +-----------------+----------+ | Variabl ...