POJ 3126  Prime Path

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 16204   Accepted: 9153

Description

The ministers of the cabinet were quite upset by the message from the Chief of Security stating that they would all have to change the four-digit room numbers on their offices. 
— It is a matter of security to change such things every now and then, to keep the enemy in the dark. 
— But look, I have chosen my number 1033 for good reasons. I am the Prime minister, you know! 
— I know, so therefore your new number 8179 is also a prime. You will just have to paste four new digits over the four old ones on your office door. 
— No, it’s not that simple. Suppose that I change the first digit to an 8, then the number will read 8033 which is not a prime! 
— I see, being the prime minister you cannot stand having a non-prime number on your door even for a few seconds. 
— Correct! So I must invent a scheme for going from 1033 to 8179 by a path of prime numbers where only one digit is changed from one prime to the next prime.

Now, the minister of finance, who had been eavesdropping, intervened. 
— No unnecessary expenditure, please! I happen to know that the price of a digit is one pound. 
— Hmm, in that case I need a computer program to minimize the cost. You don't know some very cheap software gurus, do you? 
— In fact, I do. You see, there is this programming contest going on... Help the prime minister to find the cheapest prime path between any two given four-digit primes! The first digit must be nonzero, of course. Here is a solution in the case above.

1033
1733
3733
3739
3779
8779
8179

The cost of this solution is 6 pounds. Note that the digit 1 which got pasted over in step 2 can not be reused in the last step – a new 1 must be purchased.

Input

One line with a positive number: the number of test cases (at most 100). Then for each test case, one line with two numbers separated by a blank. Both numbers are four-digit primes (without leading zeros).

Output

One line for each case, either with a number stating the minimal cost or containing the word Impossible.

Sample Input

3
1033 8179
1373 8017
1033 1033

Sample Output

6
7
0

大致题意:

给定两个四位素数a  b,要求把a变换到b

变换的过程要保证  每次变换出来的数都是一个 四位素数,而且当前这步的变换所得的素数  与  前一步得到的素数  只能有一个位不同,而且每步得到的素数都不能重复。

求从a到b最少需要的变换次数。无法变换则输出Impossible

注意:双向广搜是在一个队列中实现的,只不过是交替进行罢了!

 #include<iostream>
using namespace std;
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<queue>
#define N 10000
struct prime{
int c[];
int flag;
};
int dis[N];
int visit[N];
queue<prime>que;
int js(int *m)
{
return (m[]*+m[]*+m[]*+m[]*);
}
bool is_prime(int l)
{
bool flag=true;
for(int i=;i<=sqrt(l);++i)
{
if(l%i==)
{
flag=false;
break;
}
}
return flag;
}
int bfs()
{
while(!que.empty())
{
prime x=que.front();
que.pop();
int now=js(x.c);
for(int i=;i<=;++i)
{
prime nx=x;
nx.c[]=i;
int shu=js(nx.c);
if(!visit[shu]&&is_prime(shu))
{
visit[shu]=x.flag;
nx.flag=x.flag;
que.push(nx);
dis[shu]=dis[now]+;
}
else if(visit[shu]&&visit[shu]!=x.flag)
{
return dis[now]+dis[shu]+;
}
}
for(int j=;j<=;++j)
{
for(int i=;i<=;++i)
{
prime nx=x;
nx.c[j]=i;
int shu=js(nx.c);
if(!visit[shu]&&is_prime(shu))
{
visit[shu]=x.flag;
nx.flag=x.flag;
que.push(nx);
dis[shu]=dis[now]+;
}
else if(visit[shu]&&visit[shu]!=x.flag)
{
return dis[now]+dis[shu]+;
}
} }
}
return -;
}
int main()
{
int tex;
scanf("%d",&tex);
char a[];
while(tex--)
{
while(!que.empty()) que.pop();
memset(dis,,sizeof(dis));
memset(visit,,sizeof(visit));
scanf("%s",a);
que.push(prime{a[]-'',a[]-'',a[]-'',a[]-'',});
int p=(a[]-'')*+(a[]-'')*+(a[]-'')*+(a[]-'');
visit[p]=;dis[p]=;
int q=p;
scanf("%s",a);
que.push(prime{a[]-'',a[]-'',a[]-'',a[]-'',});
p=(a[]-'')*+(a[]-'')*+(a[]-'')*+(a[]-'');
visit[p]=;dis[p]=;
if(q==p)
{
printf("0\n");continue;
}
int temp=bfs();
if(temp==-) printf("Impossible\n");
else printf("%d\n",temp);
}
return ;
}

双向广搜 POJ 3126 Prime Path的更多相关文章

  1. POJ 3126 Prime Path(素数路径)

    POJ 3126 Prime Path(素数路径) Time Limit: 1000MS    Memory Limit: 65536K Description - 题目描述 The minister ...

  2. BFS POJ 3126 Prime Path

    题目传送门 /* 题意:从一个数到另外一个数,每次改变一个数字,且每次是素数 BFS:先预处理1000到9999的素数,简单BFS一下.我没输出Impossible都AC,数据有点弱 */ /**** ...

  3. poj 3126 Prime Path bfs

    题目链接:http://poj.org/problem?id=3126 Prime Path Time Limit: 1000MS   Memory Limit: 65536K Total Submi ...

  4. POJ 3126 Prime Path 简单广搜(BFS)

    题意:一个四位数的质数,每次只能变换一个数字,而且变换后的数也要为质数.给出两个四位数的质数,输出第一个数变换为第二个数的最少步骤. 利用广搜就能很快解决问题了.还有一个要注意的地方,千位要大于0.例 ...

  5. POJ - 3126 - Prime Path(BFS)

    Prime Path POJ - 3126 题意: 给出两个四位素数 a , b.然后从a开始,每次可以改变四位中的一位数字,变成 c,c 可以接着变,直到变成b为止.要求 c 必须是素数.求变换次数 ...

  6. (简单) POJ 3126 Prime Path,BFS。

    Description The ministers of the cabinet were quite upset by the message from the Chief of Security ...

  7. POJ 3126 Prime Path(BFS 数字处理)

    意甲冠军  给你两个4位质数a, b  每次你可以改变a个位数,但仍然需要素数的变化  乞讨a有多少次的能力,至少修改成b 基础的bfs  注意数的处理即可了  出队一个数  然后入队全部能够由这个素 ...

  8. poj 3126 Prime Path(搜索专题)

    Prime Path Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 20237   Accepted: 11282 Desc ...

  9. POJ 3126 Prime Path【从一个素数变为另一个素数的最少步数/BFS】

    Prime Path Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 26475 Accepted: 14555 Descript ...

随机推荐

  1. JPA学习(3)JPA API

    在我们的jpa的helloworld中,我们看到了简单的一个jpa保存操作,下面就来好好学习一下,JPA最主要的几个类 1.基本的几个类: ①:Persistence 类是用于获取 EntityMan ...

  2. KMP--Simpsons’ Hidden Talents

    题目网址:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=110060#problem/C Description Homer: Marge ...

  3. [moka同学笔记]yii2.0 advanced高级版 安装配置 与 rbac (Ⅰ)

    1.下载地址:http://www.yiichina.com/download,下载 Yii2 的高级应用程序模板 2.配置与安装 在服务器www目录下yii2test  [下载下来更改advance ...

  4. IBATIS动态SQL(转)

    直接使用JDBC一个非常普遍的问题就是动态SQL.使用参数值.参数本身和数据列都是动态SQL,通常是非常困难的.典型的解决办法就是用上一堆的IF-ELSE条件语句和一连串的字符串连接.对于这个问题,I ...

  5. DWR的Reverse Ajax技术实现

    DWR的逆向ajax其实主要包括两种模式:主动模式和被动模式.其中主动模式包括Polling和Comet两种,被动模式只有Piggyback这一种. 所谓的Piggyback指的是如果后台有什么内容需 ...

  6. 升级sp1后文档无法编辑

    现象: A problem occurred while connecting to the server. If the problem continues, contact your admini ...

  7. 使用RDCMan管理SharePoint虚拟机的重复要求验证的问题

    首先,这个软件可以从这里下载: Remote Desktop Connection Manager 同类型的软件还有很多,我没有很多复杂功能的要求,就选择了这款微软官方的,虽然很久都没有更新过了. 为 ...

  8. 深入理解Activity -动手写实例来感受Activity的启动模式

    介绍 上篇提到了Activity的任务,任务栈,以及启动模式.对这些概念有了了解以后,自己写一下例子来感受一下,就当作复习和加深印象了.如果对概念不熟悉的可以参考:深入理解Activity-任务,回退 ...

  9. IOS CALayer(二)

    UIview内部有个默认的CALayer对象层,虽然我门不可以重新创建它,但是我门可以再其上面添加子层. 我们知道,UIView有 addSubview:方法,同样,CALayer也有addSubla ...

  10. ListView嵌套出现的问题

    项目中一个列表子项中也需要用到列表,这就不由得使我想到ListView的嵌套,其实这个东西想想也只是复杂了一点,并没有什么难的地方,可是却依然在这里狠狠滴栽个跟头.问题出在子列表动态展开的操作上.可能 ...