POJ 1797 Heavy Transportation (Dijkstra变形)
Time Limit:3000MS Memory Limit:30000KB 64bit IO Format:%I64d & %I64u
Description
Hugo
Heavy is happy. After the breakdown of the Cargolifter project he can
now expand business. But he needs a clever man who tells him whether
there really is a way from the place his customer has build his giant
steel crane to the place where it is needed on which all streets can
carry the weight.
Fortunately he already has a plan of the city with all
streets and bridges and all the allowed weights.Unfortunately he has no
idea how to find the the maximum weight capacity in order to tell his
customer how heavy the crane may become. But you surely know.
Problem
You are given the plan of the city, described
by the streets (with weight limits) between the crossings, which are
numbered from 1 to n. Your task is to find the maximum weight that can
be transported from crossing 1 (Hugo's place) to crossing n (the
customer's place). You may assume that there is at least one path. All
streets can be travelled in both directions.
Input
city the number n of street crossings (1 <= n <= 1000) and number m
of streets are given on the first line. The following m lines contain
triples of integers specifying start and end crossing of the street and
the maximum allowed weight, which is positive and not larger than
1000000. There will be at most one street between each pair of
crossings.
Output
#i:", where i is the number of the scenario starting at 1. Then print a
single line containing the maximum allowed weight that Hugo can
transport to the customer. Terminate the output for the scenario with a
blank line.
Sample Input
1
3 3
1 2 3
1 3 4
2 3 5
Sample Output
Scenario #1:
4
每条路都有一个限制的重量 求从1到n最多可以装载多少货物顺利通过
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
using namespace std;
//const int inf=0x7fffffff;
const int MAXN=;
//#define typec int
const int INF=0x3f3f3f3f;//防止后面溢出,这个不能太大
bool vis[MAXN];
int dis[MAXN];
int map[MAXN][MAXN];
int n;
void Dijkstra(int beg)
{
for(int i=; i<=n; i++)
{
dis[i]=map[beg][i];
vis[i]=false;
}
dis[beg]=;
for(int j=; j<n; j++)
{
int k=-;
int Min=-;
for(int i=; i<=n; i++)
if(!vis[i]&&dis[i]>Min)
{
Min=dis[i];
k=i;
}
if(k==-)
break;
vis[k]= true;
for(int i=; i<=n; i++)
if(!vis[i]&&dis[i]<min(dis[k],map[i][k]))
{
dis[i]=min(dis[k],map[i][k]); }
}
}
int main(){
int t;
scanf("%d",&t);
int cnt=;
while(t--){
cnt++;
int m;
memset(vis,false,sizeof(vis));
scanf("%d%d",&n,&m);
/*for(int i=1;i<=n;i++){
for(int j=i;j<=n;j++){
if(i==j)
map[i][i]=0;
else
map[i][j]=map[j][i]=INF;
}
}*/
memset(map,,sizeof(map));
int u,v,w;
for(int i=;i<=m;i++){
scanf("%d%d%d",&u,&v,&w);
map[u][v]=map[v][u]=w;
}
Dijkstra();
printf("Scenario #%d:\n",cnt);
printf("%d\n",dis[n]);
puts(""); }
return ;
}
POJ 1797 Heavy Transportation (Dijkstra变形)的更多相关文章
- POJ.1797 Heavy Transportation (Dijkstra变形)
POJ.1797 Heavy Transportation (Dijkstra变形) 题意分析 给出n个点,m条边的城市网络,其中 x y d 代表由x到y(或由y到x)的公路所能承受的最大重量为d, ...
- POJ 1797 Heavy Transportation SPFA变形
原题链接:http://poj.org/problem?id=1797 Heavy Transportation Time Limit: 3000MS Memory Limit: 30000K T ...
- POJ 1797 Heavy Transportation (Dijkstra)
题目链接:POJ 1797 Description Background Hugo Heavy is happy. After the breakdown of the Cargolifter pro ...
- POJ 1797 Heavy Transportation / SCU 1819 Heavy Transportation (图论,最短路径)
POJ 1797 Heavy Transportation / SCU 1819 Heavy Transportation (图论,最短路径) Description Background Hugo ...
- poj 1797 Heavy Transportation(最大生成树)
poj 1797 Heavy Transportation Description Background Hugo Heavy is happy. After the breakdown of the ...
- POJ 1797 Heavy Transportation
题目链接:http://poj.org/problem?id=1797 Heavy Transportation Time Limit: 3000MS Memory Limit: 30000K T ...
- POJ 1797 ——Heavy Transportation——————【最短路、Dijkstra、最短边最大化】
Heavy Transportation Time Limit:3000MS Memory Limit:30000KB 64bit IO Format:%I64d & %I64 ...
- POJ 1797 Heavy Transportation(最大生成树/最短路变形)
传送门 Heavy Transportation Time Limit: 3000MS Memory Limit: 30000K Total Submissions: 31882 Accept ...
- POJ 1797 Heavy Transportation (dijkstra 最小边最大)
Heavy Transportation 题目链接: http://acm.hust.edu.cn/vjudge/contest/66569#problem/A Description Backgro ...
随机推荐
- android之imgView插件的使用
在开发中我们经常要用到图片下载功能,但我们可以在github上淘一些比较好的插件,这里介绍一款叫smartImageView的插件. 这里是其地址https://github.com/loopj/an ...
- 6、面向对象以及winform的简单运用(抽象基类与接口)
抽象类与抽象方法 1.书写规范: 在类前面加上abstract关键字,就成为了抽象类:在一个方法前面加上abstract关键字,就成为了抽象方法(抽象方法不能有实现方法,直接在后面加分号) 例: ab ...
- [设计模式] javascript 之 装饰者模式
装饰者模式说明 说明:通一个类来动态的对另一个类的功能对象进行前或后的修饰,给它辅加一些额外的功能; 这是对一个类对象功能的装饰,装饰的类跟被装饰的类,要求拥有相同的访问接口方法(功能),这在动态面向 ...
- JS面向对象高级特性
本篇是通过学习视频<一头扎进javascirpt高级篇>整理的一些相关知识,大致包括下面几个方面: 1 对象的创建方法 2 对象的对象属性.私有属性.类属性 3 对象的对象方法.私有方法. ...
- 国内公共DNS
DNS(Domain Name System,域名系统),因特网上作为域名和IP地址相互映射的一个分布式数据库,能够使用户更方便的访问互联网,而不用去记住能够被机器直接读取的IP数串.通过主机名,最终 ...
- MVC学习Day01
~~~~ =============================================================================================== ...
- 【UESTC 482】Charitable Exchange(优先队列+bfs)
给你n个物品交换,每个交换用r,v,t描述,代表需要用r元的东西花费t时间交换得v元的东西.一开始只有1元的东西,让你求出交换到价值至少为m的最少时间代价.相当于每个交换是一条边,时间为边权,求走到价 ...
- POJ2186 Popular Cows
Description Every cow's dream is to become the most popular cow in the herd. In a herd of N (1 <= ...
- Tomcat 404
原因:servlet没有配置正确 ,查看web.xml确认正确,以及自己的请求路径正确 在IE中提示"404"错误有以下三种情况 1.未部署Web应用 2.URL输入错误 排错方法 ...
- The prefix "mvc" for element "mvc:annotation-driven" is not bound 的解决方法
添加 xmlns:mvc="http://www.springframework.org/schema/mvc" http://www.springframework.org/sc ...