FFT(1)
FFT
Complex
struct complex{
double re,im;
complex(double r,double i){re=r,im=i;}
complex(){re=0.0,im=0.0;}
complex operator+(complex b){return complex(re+b.re,im+b.im);}
complex operator-(complex b){return complex(re-b.re,im-b.im);}
complex operator*(complex b){return complex(re*b.re-im*b.im,re*b.im+im*b.re);}
};
FFT
void fft(complex* a,int n,int* bitrev,int f){
for(i=0;i<n;++i) if(i<bitrev[i]) swap(a[i],a[bitrev[i]]);
for(i=1;i<n;i<<=1){
complex wn(cos(pi/i),f*sin(pi/i));
p=i<<1;
for(j=0;j<n;j+=p){
complex w(1,0);
for(k=0;k<i;++k,w=w*wn){
t=a[j+k],t2=w*a[j+k+i];
a[j+k]=t+t2,a[j+k+i]=t-t2;
}
}
}
if(f<0) for(i=0;i<n;++i) a[i].re/=n,a[i].im/=n;
}
bitrev
for(N=1;N<pt;N<<=1,++L);
for(i=0;i<N;++i) bitrev[i]=(bitrev[i>>1]>>1)|((i&1)<<(L-1));
UR#34
这题我第一次写FFT.
#include <cstdio>
#include <cmath>
struct complex{
double re,im;
complex(double r,double i){re=r,im=i;}
complex(){re=0.0,im=0.0;}
complex operator+(complex b){return complex(re+b.re,im+b.im);}
complex operator-(complex b){return complex(re-b.re,im-b.im);}
complex operator*(complex b){return complex(re*b.re-im*b.im,re*b.im+im*b.re);}
};
#define pi 3.1415926535897932384626
complex t,t2;
int i,j,k,p;
void swap(complex& a,complex& b){
t=a;
a=b;
b=t;
}
void fft(complex* a,int n,int* bitrev,int f){
for(i=0;i<n;++i) if(i<bitrev[i]) swap(a[i],a[bitrev[i]]);
for(i=1;i<n;i<<=1){
complex wn(cos(pi/i),f*sin(pi/i));
p=i<<1;
for(j=0;j<n;j+=p){
complex w(1,0);
for(k=0;k<i;++k,w=w*wn){
t=a[j+k],t2=w*a[j+k+i];
a[j+k]=t+t2,a[j+k+i]=t-t2;
}
}
}
if(f<0) for(i=0;i<n;++i) a[i].re/=n,a[i].im/=n;
}
int n,m,bitrev[1000000];
complex a[1000000],b[1000000];
int N,L,pt;
int main(){
scanf("%d%d",&n,&m);
++n;++m;
for(i=0;i<n;++i) scanf("%lf",&(a[i].re));
for(i=0;i<m;++i) scanf("%lf",&(b[i].re));
pt=n+m-1;
for(N=1;N<pt;N<<=1,++L);
for(i=0;i<N;++i) bitrev[i]=(bitrev[i>>1]>>1)|((i&1)<<(L-1));
fft(a,N,bitrev,1);
fft(b,N,bitrev,1);
for(i=0;i<N;++i) a[i]=a[i]*b[i];
fft(a,N,bitrev,-1);
for(i=0;i<pt;++i) printf("%d ", (int)(a[i].re+0.5));
return 0;
}
FFT(1)的更多相关文章
- 并行计算提升32K*32K点(32位浮点数) FFT计算速度(4核八线程E3处理器)
对32K*32K的随机数矩阵进行FFT变换,数的格式是32位浮点数.将产生的数据存放在堆上,对每一行数据进行N=32K的FFT,记录32K次fft的时间. 比较串行for循环和并行for循环的运行时间 ...
- 【BZOJ-2179&2194】FFT快速傅里叶&快速傅里叶之二 FFT
2179: FFT快速傅立叶 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2978 Solved: 1523[Submit][Status][Di ...
- 为什么FFT时域补0后,经FFT变换就是频域进行内插?
应该这样来理解这个问题: 补0后的DFT(FFT是DFT的快速算法),实际上公式并没变,变化的只是频域项(如:补0前FFT计算得到的是m*2*pi/M处的频域值, 而补0后得到的是n*2*pi/N处的 ...
- FFT NNT
算算劳资已经多久没学新算法了,又要重新开始学辣.直接扔板子,跑...话说FFT算法导论里讲的真不错,去看下就懂了. //FFT#include <cstdio> #include < ...
- CC countari & 分块+FFT
题意: 求一个序列中顺序的长度为3的等差数列. SOL: 对于这种计数问题都是用个数的卷积来进行统计.然而对于这个题有顺序的限制,不好直接统计,于是竟然可以分块?惊为天人... 考虑分块以后的序列: ...
- ECF R9(632E) & FFT
Description: 上一篇blog. Solution: 同样我们可以用fft来做...就像上次写的那道3-idoit一样,对a做k次卷积就好了. 同样有许多需要注意的地方:我们只是判断可行性, ...
- fft练习
数学相关一直都好弱啊>_< 窝这个月要补一补数学啦, 先从基础的fft补起吧! 现在做了 道. 窝的fft 模板 (bzoj 2179) #include <iostream> ...
- FFT时域与频域的关系,以及采样速率与采样点的影响
首先对于FFT来说,输入的信号是一个按一定采样频率获得的信号序列,而输出是每个采样点对应的频率的幅度(能量). 下面详细分析: 在FFT的输出数据中,第一个值是直流分量的振幅(这样对应周期有无穷的可能 ...
- 【玩转单片机系列002】 如何使用STM32提供的DSP库进行FFT
前些日子,因为需要在STM32F103系列处理器上,对采集的音频信号进行FFT,所以花了一些时间来研究如何高效并精确的在STM32F103系列处理器上实现FFT.在网上找了很多这方面的资料做实验并进行 ...
- FFT
void FFT(complex a[],int n,int fl){ ,j=n/;i<n;i++){ if (i<j) {complex t=a[i];a[i]=a[j];a[j]=t; ...
随机推荐
- 第五章:javascript:队列
队列是一种列表,不同的是队列只能在末尾插入元素,在队首删除元素.队列用于存储按顺序排列的数据.先进先出.这点和栈不一样,在栈中,最后入栈的元素反被优先处理.可以将队列想象成银行排队办理业务的人,排队在 ...
- Memcached——非关系型数据库分布式处理
Memcached登录校验应用: MMCacheWriter.cs类 using Memcached.ClientLibrary; using System; using System.Collect ...
- json_decode详解
json_decode是php5.2.0之后新增的一个PHP内置函数,其作用是对JSON 格式的字符串进行编码. json_decode的语法规则:json_decode ( string $j ...
- Ibatis的类型处理器TypeHandler解析
Ibatis允许用户像在hibernate中一样定义自己的类型,但是,用户自定义类型需要与数据库中的字段类型进行对应.它的处理方法是允许我们扩展TypeHandler.Ibatis框架在处理该数据类型 ...
- abstract和接口
接口只包含常量和抽象方法,不能实例化. abstract: 1.抽象类不能实例化, 2.可以没有抽象方法.但有了抽象方法,一定要被定义为抽象类. 3.子类没有实现父类中所有的抽象方法.子类也必须定义为 ...
- ansible-3 主机清单hosts的设置
主机清单的设置参考:http://www.ansible.com.cn/docs/intro_inventory.html [ceshi]192.168.220.98log ansible_ssh_h ...
- 使用属性表:VS2013上配置OpenCV
以前,windows下配置OpenCV一直不太方便:总是要手动添加lib,添加include,还要配置PATH使得程序运行时候能找到dll文件. 每次新建一个使用OpenCV的工程都要手动添加,很麻烦 ...
- 【蒟蒻の进阶PLAN】 置顶+持续连载
看到周围神犇们纷纷列计划,本蒟蒻也决定跟随他们的步伐,计划大约是周计划吧,具体怎么安排我也不确定.. 2015.12.30 刚刚学习完最基础的网络流,需要进行这方面的练习,从简到难,有空余的话尝试学习 ...
- 嵌入式实时操作系统μCOS原理与实践+事件部分代码
//事件等待表的初始化函数:pevent表示事件控制块的指针#if (OS_EVENT_EN)void OS_EventWaitListInit (OS_EVENT *pevent){ INT ...
- -----------------------------------项目中整理的非常有用的PHP函数库(二)-----------------------------------------------------
6.PHP列出目录下的文件名 如果你想列出目录下的所有文件,使用以下代码即可: function listDirFiles($DirPath){ if($dir = opendir($DirPath) ...