HDNOIP201404最短路径
| HDNOIP201404最短路径 |
| 难度级别: A; 编程语言:不限;运行时间限制:1000ms; 运行空间限制:51200KB; 代码长度限制:2000000B |
|
试题描述
|
|
a、b、c是3个互不相等的1位正数,用它们和数字0可以填满一个n行n列的方格阵列,每格中都有4种数码中的一个。填入0的格子表示障碍物,不能属于任何路径。你是否能找出一条从1行1列出发,到达n行n列且代价最小的路径呢?注意:每一格只能走向与之相邻的上、下、左、右的非0且不出界的格子。而所谓路径代价指的是路径经过的所有格子中的数字总和。请你编程求出从1行1列的位置出发到达n行n列的最小路径代价,若无法到达就输出-1。 |
|
输入
|
|
第一行输入数字n。
接下来的n行每行是一个长度为n的数字串,这n个字符串就构成了一个数字符的方阵。方阵中除了'0'外,最多还可以包含3种数字符。 |
|
输出
|
|
仅有最小代价或-1这一个整数。
|
|
输入示例
|
|
【输入样例1】
4 1231 2003 1002 1113 【输入样例2】 4 3150 1153 3311 0530 |
|
输出示例
|
|
【输出样例1】
10 【输出样例2】 -1 |
|
其他说明
|
|
60%的数据,n<10,80%的数据,n<100,100%的数据,n<1000
|
确实是一道好题。
1000*1000的最短路可能有些吃力,实测卡时1000s+。那么怎么做呢?
方阵中除了'0'外,最多还可以包含3种数字符。
这提醒我们,可以在这上面做些文章。考虑为什么用Heap来优化Dijkstra,是因为有些边很长有些边很短,对于所有入边相同的点,易得它们的距离是递增的。
算法就水落石出了,用3个单调队列代替Heap,注意每次如何取队头和如何加入队尾。
#include<cstdio>
#include<cctype>
#include<queue>
#include<cstring>
#include<algorithm>
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define ren for(int i=first[x];i!=-1;i=next[i])
using namespace std;
inline int read() {
int x=,f=;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-;
for(;isdigit(c);c=getchar()) x=x*+c-'';
return x*f;
}
const int maxn=;
char A[maxn][maxn];
int n,d[maxn][maxn],vis[maxn][maxn],idx[maxn],tp;
struct Point {
int x,y;
bool operator < (const Point& ths) {return d[x][y]<d[ths.x][ths.y];}
};
queue<Point> q[];
int getfront() {
int c=-;
if(q[].size()) c=;
if(q[].size()&&(c<||q[].front()<q[c].front())) c=;
if(q[].size()&&(c<||q[].front()<q[c].front())) c=;
return c;
}
int mx[]={,-,,},my[]={,,,-};
int solve() {
if(A[][]==''||A[n][n]=='') return -;
q[idx[A[][]]].push((Point){,});d[][]=A[][]-'';
while(q[].size()+q[].size()+q[].size()) {
int t=getfront();int x=q[t].front().x,y=q[t].front().y;q[t].pop();
if(x==n&&y==n) return d[x][y];
if(vis[x][y]) continue;vis[x][y]=;
rep(dir,,) {
int nx=x+mx[dir],ny=y+my[dir];
if(nx>=&&nx<=n&&ny>=&&ny<=n&&A[nx][ny]!=''&&d[x][y]+A[nx][ny]-''<d[nx][ny]) {
d[nx][ny]=d[x][y]+A[nx][ny]-'';
q[idx[A[nx][ny]]].push((Point){nx,ny});
}
}
}
return -;
}
int main() {
n=read();
rep(i,,n) scanf("%s",A[i]+);
memset(idx,-,sizeof(idx));
rep(i,,n) rep(j,,n) {
if(idx[A[i][j]]<&&A[i][j]!='') idx[A[i][j]]=tp++;
d[i][j]=<<;
}
printf("%d\n",solve());
return ;
}
HDNOIP201404最短路径的更多相关文章
- COJ 0244 HDNOIP201404最短路径
HDNOIP201404最短路径 难度级别: A: 编程语言:不限:运行时间限制:1000ms: 运行空间限制:51200KB: 代码长度限制:2000000B 试题描述 a.b.c是3个互不相等的1 ...
- Johnson 全源最短路径算法
解决单源最短路径问题(Single Source Shortest Paths Problem)的算法包括: Dijkstra 单源最短路径算法:时间复杂度为 O(E + VlogV),要求权值非负: ...
- Floyd-Warshall 全源最短路径算法
Floyd-Warshall 算法采用动态规划方案来解决在一个有向图 G = (V, E) 上每对顶点间的最短路径问题,即全源最短路径问题(All-Pairs Shortest Paths Probl ...
- Dijkstra 单源最短路径算法
Dijkstra 算法是一种用于计算带权有向图中单源最短路径(SSSP:Single-Source Shortest Path)的算法,由计算机科学家 Edsger Dijkstra 于 1956 年 ...
- Bellman-Ford 单源最短路径算法
Bellman-Ford 算法是一种用于计算带权有向图中单源最短路径(SSSP:Single-Source Shortest Path)的算法.该算法由 Richard Bellman 和 Leste ...
- 最短路径算法-Dijkstra
Dijkstra是解决单源最短路径的一般方法,属于一种贪婪算法. 所谓单源最短路径是指在一个赋权有向图中,从某一点出发,到另一点的最短路径. 以python代码为例,实现Dijkstra算法 1.数据 ...
- bzoj 4016: [FJOI2014]最短路径树问题
bzoj4016 最短路路径问题 Time Limit: 5 Sec Memory Limit: 512 MB Description 给一个包含n个点,m条边的无向连通图.从顶点1出发,往其余所有点 ...
- 51nod 1459 迷宫游戏 (最短路径—Dijkstra算法)
题目链接 中文题,迪杰斯特拉最短路径算法模板题. #include<stdio.h> #include<string.h> #define INF 0x3f3f3f3f ],v ...
- C++迪杰斯特拉算法求最短路径
一:算法历史 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是以 ...
随机推荐
- JetBrains WebStorm 7.0 Build 131.202 Win/Mac/Liniux
JetBrains WebStorm 7.0 Build 131.202 (Win/Mac/Liniux) | 121.6/106/133 Mb WebStorm 7 — Everything you ...
- N-Queens | & N-Queens II
The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens ...
- windows2003批量添加和导出所有ip
批量添加IP 在cmd命令行下运行: FOR /L %i IN (130,1,190) DO netsh interface ip add address "本地连接" 192.1 ...
- (转)SQL SERVER的锁机制(一)——概述(锁的种类与范围)
锁定:通俗的讲就是加锁.锁定是 Microsoft SQL Server 数据库引擎用来同步多个用户同时对同一个数据块的访问的一种机制. 定义:当有事务操作时,数据库引擎会要求不同类型的锁定,如相关数 ...
- 第十一章 TClientDataSet
第十一章 TClientDataSet 与TTable.TQuery一样,TClientDataSet也是从TDataSet继承下来的,它通常用于多层体系结构的客户端.TClientDataSet最大 ...
- MFC 颜色选择对话框、颜色按钮
COLORREF color=RGB(0,255,0); unsigned char r=GetRValue(color); unsigned char g=GetGValue(color); uns ...
- js判断是否为正整数的正则写法 JavaScript正整数正则
判断是否为正整数 JavaScript正则判断一串数字是否为正整数, 首先要明白这几个问题 1:javascript里会把一串数字前边的0自动屏蔽,(我不知道屏蔽这个词用的是否正确) console. ...
- Java编程设计2
一般我们会以这种设计方式生产对象实例,如: 创建一个接口: public interface TestOpen { String getVirtualHost(); String getCapabil ...
- 如何在ASP.NET 5和XUnit.NET中进行LocalDB集成测试
今天继续昨天的话题--单元测试,不过是在ASP.NET 5中的单元测试. 在当前的Visual Studio 2015 CTP6中,MSTest是不支持对ASP.NET 5项目进行单元测试的.因而,要 ...
- Bitset 用法(STL)
std::bitset是STL的一个模板类,它的参数是整形的数值,使用位的方式和数组区别不大,相当于只能存一个位的数组.下面看一个例子 bitset<20> b1(5); cout< ...