SCU3185 Black and white(二分图最大点权独立集)
题目大概说有几个黑色、白色矩阵,问能选出黑白不相交的矩形面积和的最大值。
建二分图,黑色矩阵为X部的点,白色为Y部,XY的点权都为其矩阵面积,如果有个黑白矩阵相交则它们之间有一条边,那样问题就是要从这个二分图中选出最大的点使其没有公共边且点权和最大。
即二分图的最大点权独立集。可以建容量网络用最小割求解,在二分图基础上加源点汇点,源点向X部连容量为权值的边,Y部向汇点连容量为权值的边,X部与Y部的无向边改为容量INF的有向边,最后的结果就是所有点权和-最小割。
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
#define INF (1<<30)
#define MAXN 444
#define MAXM 444*444*2
struct Edge{
int v,cap,flow,next;
}edge[MAXM];
int vs,vt,NV,NE,head[MAXN];
void addEdge(int u,int v,int cap){
edge[NE].v=v; edge[NE].cap=cap; edge[NE].flow=;
edge[NE].next=head[u]; head[u]=NE++;
edge[NE].v=u; edge[NE].cap=; edge[NE].flow=;
edge[NE].next=head[v]; head[v]=NE++;
}
int level[MAXN];
int gap[MAXN];
void bfs(){
memset(level,-,sizeof(level));
memset(gap,,sizeof(gap));
level[vt]=;
gap[level[vt]]++;
queue<int> que;
que.push(vt);
while(!que.empty()){
int u=que.front(); que.pop();
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(level[v]!=-) continue;
level[v]=level[u]+;
gap[level[v]]++;
que.push(v);
}
}
}
int pre[MAXN];
int cur[MAXN];
int ISAP(){
bfs();
memset(pre,-,sizeof(pre));
memcpy(cur,head,sizeof(head));
int u=pre[vs]=vs,flow=,aug=INF;
gap[]=NV;
while(level[vs]<NV){
bool flag=false;
for(int &i=cur[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap!=edge[i].flow && level[u]==level[v]+){
flag=true;
pre[v]=u;
u=v;
aug=min(aug,edge[i].cap-edge[i].flow);
if(v==vt){
flow+=aug;
for(u=pre[v]; v!=vs; v=u,u=pre[u]){
edge[cur[u]].flow+=aug;
edge[cur[u]^].flow-=aug;
}
aug=INF;
}
break;
}
}
if(flag) continue;
int minlevel=NV;
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap!=edge[i].flow && level[v]<minlevel){
minlevel=level[v];
cur[u]=i;
}
}
if(--gap[level[u]]==) break;
level[u]=minlevel+;
gap[level[u]]++;
u=pre[u];
}
return flow;
}
struct Rect{
int x1,y1,x2,y2;
}black[],white[];
bool isOver(Rect &r1,Rect &r2){
if(r1.x1>=r2.x2 || r2.x1>=r1.x2 || r1.y1>=r2.y2 || r2.y1>=r1.y2) return ;
return ;
}
int getArea(Rect &r){
return (r.x2-r.x1)*(r.y2-r.y1);
}
int main(){
int t,n,m,x1,y1,x2,y2;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
vs=; vt=n+m+; NV=vt+; NE=;
memset(head,-,sizeof(head));
int tot=;
for(int i=; i<=n; ++i){
scanf("%d%d%d%d",&black[i].x1,&black[i].y1,&black[i].x2,&black[i].y2);
addEdge(vs,i,getArea(black[i]));
tot+=getArea(black[i]);
}
for(int i=; i<=m; ++i){
scanf("%d%d%d%d",&white[i].x1,&white[i].y1,&white[i].x2,&white[i].y2);
addEdge(i+n,vt,getArea(white[i]));
tot+=getArea(white[i]);
}
for(int i=; i<=n; ++i){
for(int j=; j<=m; ++j){
if(isOver(black[i],white[j])) addEdge(i,j+n,INF);
}
}
printf("%d\n",tot-ISAP());
}
return ;
}
SCU3185 Black and white(二分图最大点权独立集)的更多相关文章
- BZOJ 1475 方格取数(二分图最大点权独立集)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1475 [题目大意] 给出一个n*n的方格,从中取一些不相邻的数字,使得和最大 [题解] ...
- SCU 4442 party 二分图最大点权独立集
每个青蛙喝黑茶或者红茶或者都可以喝 M个矛盾关系 有矛盾的不能喝同种茶 但你可以花费Wi使得这个青蛙消除所有矛盾 把矛盾当作边 青蛙当作点 如果这两个青蛙只喝不同的一种茶就不建边 题目中保证了不存在奇 ...
- zoj 3165 (最小割,最大点权独立集)
胡伯涛的<最小割模型在信息学竞赛中的应用>写的真牛. 这道题是选择一些男孩和女孩参加party,邀请的男孩女孩之间不能有 8g,图就是个明显的二分图,就是选择一些点之间没有8g关系,就是二 ...
- 【最大点权独立集】【HDU1565】【方格取数】
题目大意: 给你一个n*n的格子的棋盘,每个格子里面有一个非负数. 从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取的数所在的2个格子不能相邻,并且取出的数的和最大. 初看: 没想法 ...
- hdu 1565&&hdu 1569 (最大点权独立集)
题目意思很明确就是选一些没有相连的数字,使和最大,建成二分图后求最大点权独立集,, #include<stdio.h> #include<string.h> const int ...
- LibreOJ #6007. 「网络流 24 题」方格取数 最小割 最大点权独立集 最大流
#6007. 「网络流 24 题」方格取数 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据 题目描述 ...
- 最小点权覆盖集&最大点权独立集
最小点权覆盖集 二分图最小点权覆盖集解决的是这样一个问题: 在二分图中,对于每条边,两个端点至少选一个,求所选取的点最小权值和. 方法: 1.先对图二分染色,对于每条边两端点的颜色不同 2.然后建立源 ...
- HDU1569 最大流(最大点权独立集)
方格取数(2) Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Subm ...
- hdu1569 方格取数(2) 最大点权独立集=总权和-最小点权覆盖集 (最小点权覆盖集=最小割=最大流)
/** 转自:http://blog.csdn.net/u011498819/article/details/20772147 题目:hdu1569 方格取数(2) 链接:https://vjudge ...
随机推荐
- [Effective JavaScript笔记]第3条:当心隐式的强制转换
js对类型错误出奇的宽容 3+true; //4 3*””; //0 3+[]; //3 3+[3]; //33 以上表达式在许多语言早就变红了.而js不但不报错还给你个结果. 极少情况会产生即时 ...
- [Effective JavaScript 笔记] 第5条:避免对混合类型使用==运算符
“1.0e0”=={valueOf:function(){return true;}} 是值是多少? 这两个完全不同的值使用==运算符是相等的.为什么呢?请看<[Effective JavaSc ...
- [Effective JavaScript 笔记] 第9条:始终声明局部变量
如果忘记将变量声明为局部变量,该变量将会隐式地转变为全局变量 function swap(a,i,j){ temp=a[i]; a[i]=a[j]; a[j]=temp; } 尽管该程序没有使用var ...
- zabbix再爆高危SQL注入漏洞,可获系统权限
漏洞概述 zabbix是一个开源的企业级性能监控解决方案.近日,zabbix的jsrpc的profileIdx2参数存在insert方式的SQL注入漏洞,攻击者无需授权登陆即可登陆zabbix管理系统 ...
- 台大《机器学习基石》课程感受和总结---Part 1(转)
期末终于过去了,看看别人的总结:http://blog.sina.com.cn/s/blog_641289eb0101dynu.html 接触机器学习也有几年了,不过仍然只是个菜鸟,当初接触的时候英文 ...
- 谷歌、百度、1万ip能赚多少钱?1000IP能够值多少钱呢?
谷歌.百度.1万ip能赚多少钱?1000IP能够值多少钱呢? (2014-04-03 11:50:52) 转载▼ 标签: 广告联盟 百度联盟 谷歌联盟 ip赚钱 很多在人问:谷歌.百度:1 ...
- /var/lock/subsys作用
转自: http://sunxiaqw.blog.163.com/blog/static/9906543820111184422807/ 关于/var/lock/subsys目录 总的来说,系统关闭的 ...
- Windows环境下的jekyll本地搭建
一.配置ruby环境 由于jekyll是用ruby语言写的一个静态网页生成工具,所以要搭建jekyll本地环境就需要先配置好ruby环境. 1)去官网下载Ruby:https://www.ruby-l ...
- maven项目,导入的jar包,没有包含在pom文件中,install失败
[INFO] BUILD FAILURE[INFO] ------------------------------------------------------------------------[ ...
- 转圈游戏(codevs 3285)
题目描述 Description n 个小伙伴(编号从 0 到 n-1)围坐一圈玩游戏.按照顺时针方向给 n 个位置编号,从0 到 n-1.最初,第 0 号小伙伴在第 0 号位置,第 1 号小伙伴在第 ...