SCU3185 Black and white(二分图最大点权独立集)
题目大概说有几个黑色、白色矩阵,问能选出黑白不相交的矩形面积和的最大值。
建二分图,黑色矩阵为X部的点,白色为Y部,XY的点权都为其矩阵面积,如果有个黑白矩阵相交则它们之间有一条边,那样问题就是要从这个二分图中选出最大的点使其没有公共边且点权和最大。
即二分图的最大点权独立集。可以建容量网络用最小割求解,在二分图基础上加源点汇点,源点向X部连容量为权值的边,Y部向汇点连容量为权值的边,X部与Y部的无向边改为容量INF的有向边,最后的结果就是所有点权和-最小割。
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
#define INF (1<<30)
#define MAXN 444
#define MAXM 444*444*2
struct Edge{
int v,cap,flow,next;
}edge[MAXM];
int vs,vt,NV,NE,head[MAXN];
void addEdge(int u,int v,int cap){
edge[NE].v=v; edge[NE].cap=cap; edge[NE].flow=;
edge[NE].next=head[u]; head[u]=NE++;
edge[NE].v=u; edge[NE].cap=; edge[NE].flow=;
edge[NE].next=head[v]; head[v]=NE++;
}
int level[MAXN];
int gap[MAXN];
void bfs(){
memset(level,-,sizeof(level));
memset(gap,,sizeof(gap));
level[vt]=;
gap[level[vt]]++;
queue<int> que;
que.push(vt);
while(!que.empty()){
int u=que.front(); que.pop();
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(level[v]!=-) continue;
level[v]=level[u]+;
gap[level[v]]++;
que.push(v);
}
}
}
int pre[MAXN];
int cur[MAXN];
int ISAP(){
bfs();
memset(pre,-,sizeof(pre));
memcpy(cur,head,sizeof(head));
int u=pre[vs]=vs,flow=,aug=INF;
gap[]=NV;
while(level[vs]<NV){
bool flag=false;
for(int &i=cur[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap!=edge[i].flow && level[u]==level[v]+){
flag=true;
pre[v]=u;
u=v;
aug=min(aug,edge[i].cap-edge[i].flow);
if(v==vt){
flow+=aug;
for(u=pre[v]; v!=vs; v=u,u=pre[u]){
edge[cur[u]].flow+=aug;
edge[cur[u]^].flow-=aug;
}
aug=INF;
}
break;
}
}
if(flag) continue;
int minlevel=NV;
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap!=edge[i].flow && level[v]<minlevel){
minlevel=level[v];
cur[u]=i;
}
}
if(--gap[level[u]]==) break;
level[u]=minlevel+;
gap[level[u]]++;
u=pre[u];
}
return flow;
}
struct Rect{
int x1,y1,x2,y2;
}black[],white[];
bool isOver(Rect &r1,Rect &r2){
if(r1.x1>=r2.x2 || r2.x1>=r1.x2 || r1.y1>=r2.y2 || r2.y1>=r1.y2) return ;
return ;
}
int getArea(Rect &r){
return (r.x2-r.x1)*(r.y2-r.y1);
}
int main(){
int t,n,m,x1,y1,x2,y2;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
vs=; vt=n+m+; NV=vt+; NE=;
memset(head,-,sizeof(head));
int tot=;
for(int i=; i<=n; ++i){
scanf("%d%d%d%d",&black[i].x1,&black[i].y1,&black[i].x2,&black[i].y2);
addEdge(vs,i,getArea(black[i]));
tot+=getArea(black[i]);
}
for(int i=; i<=m; ++i){
scanf("%d%d%d%d",&white[i].x1,&white[i].y1,&white[i].x2,&white[i].y2);
addEdge(i+n,vt,getArea(white[i]));
tot+=getArea(white[i]);
}
for(int i=; i<=n; ++i){
for(int j=; j<=m; ++j){
if(isOver(black[i],white[j])) addEdge(i,j+n,INF);
}
}
printf("%d\n",tot-ISAP());
}
return ;
}
SCU3185 Black and white(二分图最大点权独立集)的更多相关文章
- BZOJ 1475 方格取数(二分图最大点权独立集)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1475 [题目大意] 给出一个n*n的方格,从中取一些不相邻的数字,使得和最大 [题解] ...
- SCU 4442 party 二分图最大点权独立集
每个青蛙喝黑茶或者红茶或者都可以喝 M个矛盾关系 有矛盾的不能喝同种茶 但你可以花费Wi使得这个青蛙消除所有矛盾 把矛盾当作边 青蛙当作点 如果这两个青蛙只喝不同的一种茶就不建边 题目中保证了不存在奇 ...
- zoj 3165 (最小割,最大点权独立集)
胡伯涛的<最小割模型在信息学竞赛中的应用>写的真牛. 这道题是选择一些男孩和女孩参加party,邀请的男孩女孩之间不能有 8g,图就是个明显的二分图,就是选择一些点之间没有8g关系,就是二 ...
- 【最大点权独立集】【HDU1565】【方格取数】
题目大意: 给你一个n*n的格子的棋盘,每个格子里面有一个非负数. 从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取的数所在的2个格子不能相邻,并且取出的数的和最大. 初看: 没想法 ...
- hdu 1565&&hdu 1569 (最大点权独立集)
题目意思很明确就是选一些没有相连的数字,使和最大,建成二分图后求最大点权独立集,, #include<stdio.h> #include<string.h> const int ...
- LibreOJ #6007. 「网络流 24 题」方格取数 最小割 最大点权独立集 最大流
#6007. 「网络流 24 题」方格取数 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据 题目描述 ...
- 最小点权覆盖集&最大点权独立集
最小点权覆盖集 二分图最小点权覆盖集解决的是这样一个问题: 在二分图中,对于每条边,两个端点至少选一个,求所选取的点最小权值和. 方法: 1.先对图二分染色,对于每条边两端点的颜色不同 2.然后建立源 ...
- HDU1569 最大流(最大点权独立集)
方格取数(2) Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Subm ...
- hdu1569 方格取数(2) 最大点权独立集=总权和-最小点权覆盖集 (最小点权覆盖集=最小割=最大流)
/** 转自:http://blog.csdn.net/u011498819/article/details/20772147 题目:hdu1569 方格取数(2) 链接:https://vjudge ...
随机推荐
- Inheritance
Often, classes will have shared characteristics with other classes. Rewriting the same methods for e ...
- 他们在军训,我在搞 OI(一)
Day 1 理论上,我现在不应该坐在电脑前打字,因为早在今天上午 6:20 全体新高一同学就坐车前往军(无)训(尽)基(炼)地(狱)了,而今天上午 6:20 我还在被窝里呢…… 没错,我旷掉了军训,然 ...
- weblogic <BEA-000438>
现在创建域并启动服务器, 或许会发现如下提示的错误信息:<Error> <Socket> <BEA-000438> <Unable to load perfo ...
- SQL— CONCAT(字符串连接函数)
有的时候,我们有需要将由不同栏位获得的资料串连在一起.每一种资料库都有提供方法来达到这个目的: MySQL: CONCAT() Oracle: CONCAT(), || SQL Server: + C ...
- C++ virtual descructor
[代码1] C++ Code 12345678910111213141516171819202122232425262728293031323334353637383940414243444546 ...
- 【转】Apache Solr 访问权限控制
本文转自:http://www.cnblogs.com/ibook360/archive/2011/11/07/2239247.html 在Tomcat6增加 Solr的访问权限方法如下: 编辑tom ...
- Android 中的Resource
Android与ios相比,各种各样Resource算个独特之处.详情请参见官网Resource Types Resource有许多种,常见的有图像资源,布局资源,等等.每一种资源的位置都是固定的,这 ...
- Java for LeetCode 023 Merge k Sorted Lists
Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity. 解 ...
- Greedy:Allowance(POJ 3040)
零用钱大作战 题目大意:农夫和牛又搞新花样了,现在农夫想给Bessie每个星期都给一点零用钱,农夫有一堆面值的钱币,并且这个钱币都能被上一个钱币整除(1,5,10,50),并且钱币有一定数量,要你求最 ...
- codeforces A. Rook, Bishop and King 解题报告
题目链接:http://codeforces.com/problemset/problem/370/A 题目意思:根据rook(每次可以移动垂直或水平的任意步数(>=1)),bishop(每次可 ...