大致题意:
    给出一个又n个点,m条边组成的无向图。给出两个点s,t。对于图中的每个点,去掉这个点都需要一定的花费。求至少多少花费才能使得s和t之间不连通。

大致思路:
    最基础的拆点最大流,把每个点拆作两个点 i 和 i' 连接i->i'费用为去掉这个点的花费,如果原图中有一条边a->b则连接a'->b。对这个图求出最大流即可。

画了个图,仔细看看似乎是这么回事

 //
/*
HDU 4289
G++ 62ms 1888K
最大流
SAP
*/
#include<stdio.h>
#include<iostream>
#include<map>
#include<set>
#include<algorithm>
#include<string.h>
#include<stdlib.h>
using namespace std; const int MAXN=;//点数的最大值
const int MAXM=;//边数的最大值
const int INF=0x3f3f3f3f; struct Node
{
int from,to,next;
int cap;
}edge[MAXM];
int tol;
int head[MAXN];
int dep[MAXN];
int gap[MAXN];//gap[x]=y:说明残留网络中 dep[i]==x的个数为y int n;//点的实际个数,一定是总的点的个数,包括源点和汇点
void init()
{
tol=;
memset(head,-,sizeof(head));
}
void addedge(int u,int v,int w)
{
edge[tol].from=u;
edge[tol].to=v;
edge[tol].cap=w;
edge[tol].next=head[u];
head[u]=tol++;
edge[tol].from=v;
edge[tol].to=u;
edge[tol].cap=;
edge[tol].next=head[v];
head[v]=tol++;
}
void BFS(int start,int end)
{
memset(dep,-,sizeof(dep));
memset(gap,,sizeof(gap));
gap[]=;
int que[MAXN];
int front,rear;
front=rear=;
dep[end]=;
que[rear++]=end;
while(front!=rear)
{
int u=que[front++];
if(front==MAXN)front=;
for(int i=head[u];i!=-;i=edge[i].next)
{
int v=edge[i].to;
if(edge[i].cap!=||dep[v]!=-)continue;
que[rear++]=v;
if(rear==MAXN)rear=;
dep[v]=dep[u]+;
++gap[dep[v]];
}
}
}
int SAP(int start,int end)
{
int res=;
BFS(start,end);
int cur[MAXN];
int S[MAXN];
int top=;
memcpy(cur,head,sizeof(head));
int u=start;
int i;
while(dep[start]<n)
{
if(u==end)
{
int temp=INF;
int inser;
for(i=;i<top;i++)
if(temp>edge[S[i]].cap)
{
temp=edge[S[i]].cap;
inser=i;
}
for(i=;i<top;i++)
{
edge[S[i]].cap-=temp;
edge[S[i]^].cap+=temp;
}
res+=temp;
top=inser;
u=edge[S[top]].from;
}
if(u!=end&&gap[dep[u]-]==)//出现断层,无增广路
break;
for(i=cur[u];i!=-;i=edge[i].next)
if(edge[i].cap!=&&dep[u]==dep[edge[i].to]+)
break;
if(i!=-)
{
cur[u]=i;
S[top++]=i;
u=edge[i].to;
}
else
{
int min=n;
for(i=head[u];i!=-;i=edge[i].next)
{
if(edge[i].cap==)continue;
if(min>dep[edge[i].to])
{
min=dep[edge[i].to];
cur[u]=i;
}
}
--gap[dep[u]];
dep[u]=min+;
++gap[dep[u]];
if(u!=start)
u=edge[S[--top]].from;
} }
return res;
} int main()
{
//freopen("B.in","r",stdin);
//freopen("B.out","w",stdout);
int N,M;
int u,v;
int start;
int end;
while(scanf("%d%d",&N,&M)!=EOF)
{
init();
scanf("%d%d",&start,&end);
start=*start-;
end=*end;
n=*N;
for(int i=;i<=N;i++)
{
scanf("%d",&u);
addedge(*i-,*i,u);
addedge(*i,*i-,u);
}
while(M--)
{
scanf("%d%d",&u,&v);
addedge(*u,*v-,INF);
addedge(*v,*u-,INF);//这里一定要注意
}
printf("%d\n",SAP(start,end));
}
return ;
}

hdu 4289 最大流拆点的更多相关文章

  1. hdu 1853 (费用流 拆点)

    // 给定一个有向图,必须用若干个环来覆盖整个图,要求这些覆盖的环的权值最小. 思路:原图每个点 u 拆为 u 和 u' ,从源点引容量为 1 费用为 0 的边到 u ,从 u' 引相同性质的边到汇点 ...

  2. HDU 4289 Control (网络流,最大流)

    HDU 4289 Control (网络流,最大流) Description You, the head of Department of Security, recently received a ...

  3. poj 3498 March of the Penguins(最大流+拆点)

    题目大意:在南极生活着一些企鹅,这些企鹅站在一些冰块上,现在要让这些企鹅都跳到同一个冰块上.但是企鹅有最大的跳跃距离,每只企鹅从冰块上跳走时会给冰块造成损害,因此企鹅跳离每个冰块都有次数限制.找出企鹅 ...

  4. HDU 1532 最大流入门

    1.HDU 1532 最大流入门,n个n条边,求第1点到第m点的最大流.只用EK做了一下. #include<bits/stdc++.h> using namespace std; #pr ...

  5. poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分, dinic, isap

    poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分 dinic /* * Author: yew1eb * Created Time: 2014年10月31日 星期五 ...

  6. HDU 4289 Control(最大流+拆点,最小割点)

    题意: 有一群恐怖分子要从起点st到en城市集合,你要在路程中的城市阻止他们,使得他们全部都被抓到(当然st城市,en城市也可以抓捕).在每一个城市抓捕都有一个花费,你要找到花费最少是多少. 题解: ...

  7. hdu 4289 Control(最小割 + 拆点)

    http://acm.hdu.edu.cn/showproblem.php?pid=4289 Control Time Limit: 2000/1000 MS (Java/Others)    Mem ...

  8. (网络流 最大流 Dinic || SAP)Control -- hdu --4289

    链接: http://acm.hdu.edu.cn/showproblem.php?pid=4289 http://acm.hust.edu.cn/vjudge/contest/view.action ...

  9. I - Control - HDU 4289 (最大流)

    题意:有N个城市,现在城市S出现了一伙歹徒,他们想运送一些炸弹到D城市,不过警方已经得到了线报知道他们的事情,不过警察不知道他们所在的具体位置,所以只能采取封锁城市的办法来阻断暴徒,不过封锁城市是需要 ...

随机推荐

  1. CentOS 7 使用经验(更新中)

    首先说一下写这篇博客的初衷. 由于公司这一期的产品准备支持的环境有CentOS 7.MySql 5.6.Java 8.Tomcat 8等等,并且因为人员严重不足,我本月的开发任务在原有的基础上又加上了 ...

  2. 使用spring集成hibernate

    <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.sp ...

  3. UICollectionViewController用法

    在iOS 6 发布前,开发人员习惯使用UITableView来展示几乎所有类型的数据集合.ios 6 为 IOS 引入了全新的控制器,用来显示数据集合,集合视图控制器是与表视图控制器类似的全新UI框架 ...

  4. linux 的终端字体色和背景色的修改方法(一)

    更改Linux系统终端的颜色主题 随着Linux系统在服务器端的崛起,Linux也在慢慢进军个人桌面系统领域.如果在使用Linux系统的终端时,对其颜色主题不是很满意,该怎么修改颜色的主题呢?今天笔者 ...

  5. cocos2dx 安卓编译问题收集

    问题: 新的cocos2d-x 2.2.5 在使用Eclipse的安卓NDK 9 的编译器进行编译的时候,问题提示如下: [armeabi] Compile++ thumb: cocos_extens ...

  6. CSS包含块containing block详解

    “包含块(containing block)”,W3c中一个很重要的概念,今天带大家一起来好好研究下. 初步理解 在 CSS2.1 中,很多框的定位和尺寸的计算,都取决于一个矩形的边界,这个矩形,被称 ...

  7. [Effective JavaScript 笔记] 第7条:视字符串为16位的代码单元序列

    Unicode编码,基础:它为世界上所有的文字系统的每个字符单位分配一个唯一的整数,该整数介于0~1114111之间,在Unicode术语中称为代码点(code point). 和其它字符编码几乎没有 ...

  8. django admin 扩展

    添加自定义动作: 例子,添加一个方法,批量更新文章,代码如下: from django.contrib import admin from myapp.models import Article de ...

  9. Python序列切片的注意事项

    a=[1,2,3,4,5,6,7,8,9,10] 1)普通切片,形如array[m:n],只包含起始索引m,和不被包含在结果内的终点索引n, 注意终点索引可以大于序列的大小(长度),若终点索引大于序列 ...

  10. TortoiseSVN中图标的含义

    今天在使用svn时发现有好多不认识了,所以查了下svn帮助手册.借此总结了下 svn 中图标的含义 一个新检出的工作复本使用绿色的勾做重载.表示Subversion状态 正常. 在开始编辑一个文件后, ...