题目来源:UVa 10294 Arif in Dhaka (First Love Part 2)

题意:n颗珠子t种颜色 求有多少种项链和手镯 项链不可以翻转 手镯可以翻转

  【分析】

  要开始学置换了。

  置换是什么呢? 

置换的广义概念在不同语境下有不同的形式定义:

集合论中,一个集合的置换是从该集合映至自身的双射;在有限集的情况,便与上述定义一致。
组合数学中,置换一词的传统意义是一个有序序列,其中元素不重复,但可能有阙漏。例如1,2,4,3可以称为1,2,3,4,5,6的一个置换,但是其中不含5,6。此时通常会标明为“从n个对象取r个对象的置换”。
 
 
  置换的乘法:
  f={1,3,2} g={2,1,3} f*g={2,3,1}
  计算过程是 1->1->2, 2->3->3 , 3->2->1 。
  
  置换的循环移位  (1 4 3)表示1->4, 4->3, 3->1。
  比如 (1 2 3 4 5)
            (3 5 1 4 2) =(1 3)(2 5)(4)
  循环节为3.
 
  等价类计数问题
  题目定义一种等价关系,满足等价关系的元素被看成是同一类,只统计一次。等价关系满足自反性、对称性、传递性。
   
  burnside引理
  对于一个置换f,若一个着色方案s经过置换后不变,称s为f的不动点。(即循环里面只有一个元素)
  将f的不动点数目记为C(f),则可以证明等价类数目为所有C(f)的平均值。
 
  这题用到burnside引理或polya定理。(polya定理可以用burnside引理证明)
 
  本题:
  旋转:
    如果逆时针旋转i颗珠子的间距,那么珠子0,i,2*i...构成一个循环。这个循环有n/gcd(i,n)个元素,根据对称性,所有循环长度均相同,因此一共有gcd(i,n)个循环。这些置换的不动点总数为a=sigma(t^gcd(i,n))。
 
  翻转:
    分两种情况讨论。当n为奇数时,对称轴有n条,。。。。不动点总数为$n*t$^$\dfrac{n+1}{2}$
    当n为偶数是时,有两种对称轴,一共n条,。。。。不动点总数为$\dfrac{n}{2}*(t$^$(\dfrac{n}{2}+1)+t$^$\dfrac{n}{2})$
 
  加起来求均值即可。
 
 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
#define Maxn 60
#define LL long long LL pw[]; int gcd(int a,int b)
{
if(b==) return a;
return gcd(b,a%b);
} int main()
{
int n,t;
while(scanf("%d%d",&n,&t)!=EOF)
{
pw[]=;
for(int i=;i<=n;i++) pw[i]=pw[i-]*t;
LL a=;
for(int i=;i<n;i++) a+=pw[gcd(i,n)];
LL b=;
if(n%==) b=n*pw[(n+)/];
else b=n/*(pw[n/+]+pw[n/]);
printf("%lld %lld\n",a/n,(a+b)//n);
}
return ;
}

  其实觉得这题的数据范围过不了啊,不是10^50了么????

  为什么大家都这样打??

2017-01-11 11:18:14

【uva 10294】 Arif in Dhaka (First Love Part 2) (置换,burnside引理|polya定理)的更多相关文章

  1. Uva 10294 Arif in Dhaka (First Love Part 2)

    Description 现有一颗含\(N\)个珠子的项链,每个珠子有\(t\)种不同的染色.现求在旋转置换下有多少种本质不同的项链,在旋转和翻转置换下有多少种本质不同的项链.\(N < 51,t ...

  2. UVa 10294 Arif in Dhaka (First Love Part 2)(置换)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=35397 [思路] Polya定理. 旋转:循环节为gcd(i,n) ...

  3. UVa 10294 Arif in Dhaka (First Love Part 2) (Polya定理)

    题意:给定 n 和 m 表示要制作一个项链和手镯,项链和手镯的区别就是手镯旋转和翻转都是相同的,而项链旋转都是相同的,而翻转是不同的,问你使用 n 个珠子和 m 种颜色可以制作多少种项链和手镯. 析: ...

  4. UVA10294 Arif in Dhaka (First Love Part 2) —— 置换、poyla定理

    题目链接:https://vjudge.net/problem/UVA-10294 题解: 白书P146~147. 为什么旋转i个间距,就有gcd(i,n)个循环,且每个循环有n/gcd(i,n)个元 ...

  5. [Uva10294]Arif in Dhaka

    [Uva10294]Arif in Dhaka 标签: 置换 Burnside引理 题目链接 题意 有很多个珠子穿成环形首饰,手镯可以翻转和旋转,项链只能旋转.(翻转过的手镯相同,而项链不同) 有n个 ...

  6. UVa 10294(polya 翻转与旋转)

    Arif in Dhaka(First Love Part 2) Input: standard input Output: standard output Time Limit: 2 seconds ...

  7. UVA 10294 项链与手镯 (置换)

    Burnside引理:对于一个置换\(f\), 若一个着色方案\(s\)经过置换后不变,称\(s\)为\(f\)的不动点.将\(f\)的不动点数目记为\(C(f)\), 则可以证明等价类数目为\(C( ...

  8. UVA10294 Arif in Dhaka (群论,Polya定理)

    UVA10294 Arif in Dhaka (群论,Polya定理) 题意 : 给你一个长为\(n\)的项链和手镯,每个珠子有\(m\)种颜色. 两个手镯定义为相同,即它们通过翻转和旋转得到一样的手 ...

  9. UVa 10294 (Pólya计数) Arif in Dhaka (First Love Part 2)

    Burnside定理:若一个着色方案s经过置换f后不变,称s为f的不动点,将置换f的不动点的数目记作C(f).等价类的数目等于所有C(f)的平均值. 一个项链,一个手镯,区别在于一个能翻转一个不能,用 ...

随机推荐

  1. Tomcat启动报错:org.apache.catalina.LifecycleException: Failed to start component [StandardEngine[Catalin

    Error starting ApplicationContext. To display the auto-configuration report re-run your application ...

  2. 【BZOJ】2055 80人环游世界

    [算法]有源汇上下界最小费用可行流 [题解]上下界 因为上下界相同,所以无所谓最小流了,可行流(初始流+附加流)就是答案了. 记得源点向新建节点连一条容量为m(人)的边. bzoj 2055 80人环 ...

  3. Transformation(线段树+HDU4578+多种操作+鬼畜的代码)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4578 题目: 题意:n个数初始值为0,进行四种操作:1.将区间内的数字加c:2.将区间内的数字乘c:3 ...

  4. Java线程(一)

    1. java什么叫线程安全?什么叫不安全? 就是线程同步的意思,就是当一个程序对一个线程安全的方法或者语句进行访问的时候,其他的不能再对他进行操作了,必须等到这次访问结束以后才能对这个线程安全的方法 ...

  5. Oracle 内存管理

    --内存分配建库时可以先分配系统内存的50%-80%给Oracle,后期根据业务再进行调整.SGA.PGA分配比例:OLTP:SGA %80 , PGA %20OLAP:SGA %50 , PGA % ...

  6. FISCO-BCOS平台共识

    FISCO-BCOS 应用于区块链的多节点并行拜占庭容错共识算法 看了下微众平台的wiki共识知识 学习下 ()内是自己的思考  参考: https://github.com/FISCO-BCOS/W ...

  7. c#中char、string转换为十六进制byte的浅析

    问题引出: string转换为byte(十六进制) static void Main(string[] args) { "; byte[] b = Encoding.Default.GetB ...

  8. C++ 流操作符重载函数

    1. 问题 在C++中,在进行输入输出操作时,我们首先会想到用cout, cin这两个库操作语句来实现,比如 cout << 8 << "hello world!&q ...

  9. supervisor error: <class 'socket.error'>, [Errno 110]

    supervisorctr status报错 error: <class 'socket.error'>, [Errno 110] Connection timed out: file: ...

  10. PCA和SVD

    一.PCA(Principal Component Analysis) 主成分分析,数据从原来的坐标系转换到新的坐标系,只保留新坐标系中的前面几个坐标轴,即对数据进行了降维处理 1.算法描述 (1)第 ...