题意:给你一张有向图,求从1出发,回到1的欧拉回路数量。

先特判掉欧拉回路不存在时的情况。

看这个吧:http://blog.csdn.net/yuanjunlai141/article/details/76691680。

这是求有向图(以某个点为根的)生成外向树的方法。

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const ll MOD=998244353ll;
int n,a[405][405],chu[405],ru[405];
ll A[405][405],jc[200005];
int sum;
bool vis[405];
void dfs(int U){
++sum;
vis[U]=1;
for(int i=1;i<=n;++i){
if(a[U][i] && !vis[i]){
dfs(i);
}
}
}
ll Quick_Pow(ll a,ll p){
if(!p){
return 1ll;
}
ll res=Quick_Pow(a,p>>1);
res=res*res%MOD;
if((p&1ll)==1ll){
res=a%MOD*res%MOD;
}
return res;
}
ll guass_jordan()
{
if(n==2){
return A[2][2];
}
for(int i=2;i<=n;++i){
for(int j=2;j<=n;++j){
A[i-1][j-1]=A[i][j];
}
}
ll res=1;
for(int i=1;i<n;++i)
{
int pivot=i;
for(int j=i+1;j<n;++j)
if(A[j][i]){
pivot=j;
break;
}
swap(A[i],A[pivot]);
if(i!=pivot){
res=res*(MOD-1ll)%MOD;
}
if(A[i][i]==0){
return 0;
}
ll ni=Quick_Pow(A[i][i],MOD-2ll);
for(int j=i+1;j<n;++j)
A[i][j]=A[i][j]*ni%MOD;
res=res*A[i][i]%MOD;
for(int j=1;j<n;++j)
if(i!=j)
for(int k=i+1;k<n;++k)
A[j][k]=(A[j][k]-A[j][i]*A[i][k]%MOD+MOD)%MOD;
}
return res;
}
int main(){
// freopen("hdu6064.in","r",stdin);
jc[0]=1;
for(int i=1;i<=200000;++i){
jc[i]=jc[i-1]*(ll)i%MOD;
}
int zu=0;
while(scanf("%d",&n)!=EOF){
++zu;
printf("Case #%d: ",zu);
if(n==1){
puts("1");
continue;
}
memset(A,0,sizeof(A));
memset(chu,0,sizeof(chu));
memset(ru,0,sizeof(ru));
for(int i=1;i<=n;++i){
for(int j=1;j<=n;++j){
scanf("%d",&a[i][j]);
}
}
bool flag=1;
for(int i=1;i<=n;++i){
for(int j=1;j<=n;++j){
ru[i]+=a[j][i];
chu[i]+=a[i][j];
if(j!=i){
A[i][i]=(A[i][i]+(ll)a[j][i])%MOD;
if(a[i][j]){
A[i][j]=MOD-a[i][j];
}
}
}
if(ru[i]!=chu[i]){
flag=0;
break;
}
}
if(!flag){
puts("0");
continue;
}
sum=0;
memset(vis,0,sizeof(vis));
dfs(1);
if(sum!=n){
puts("0");
continue;
}
ll ans=guass_jordan()*jc[ru[1]]%MOD;
for(int i=2;i<=n;++i){
ans=ans*jc[(ru[i]-1)]%MOD;
}
for(int i=1;i<=n;++i){
for(int j=1;j<=n;++j){
ans=ans*Quick_Pow(jc[a[i][j]],MOD-2ll)%MOD;
}
}
printf("%lld\n",ans);
}
return 0;
}

【Matrix-tree定理】【BEST Theorem】hdu6064 RXD and numbers的更多相关文章

  1. BZOJ.4031.[HEOI2015]小Z的房间(Matrix Tree定理 辗转相除)

    题目链接 辗转相除解行列式的具体实现? 行列式的基本性质. //864kb 64ms //裸的Matrix Tree定理.练习一下用辗转相除解行列式.(因为模数不是质数,所以不能直接乘逆元来高斯消元. ...

  2. [bzoj1016][JSOI2008]最小生成树计数 (Kruskal + Matrix Tree 定理)

    Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...

  3. @总结 - 7@ 生成树计数 —— matrix - tree 定理(矩阵树定理)与 prüfer 序列

    目录 @0 - 参考资料@ @0.5 - 你所需要了解的线性代数知识@ @1 - 矩阵树定理主体@ @证明 part - 1@ @证明 part - 2@ @证明 part - 3@ @证明 part ...

  4. 【证明与推广与背诵】Matrix Tree定理和一些推广

    [背诵手记]Matrix Tree定理和一些推广 结论 对于一个无向图\(G=(V,E)\),暂时钦定他是简单图,定义以下矩阵: (入)度数矩阵\(D\),其中\(D_{ii}=deg_i\).其他= ...

  5. 数学-Matrix Tree定理证明

    老久没更了,冬令营也延期了(延期后岂不是志愿者得上学了?) 最近把之前欠了好久的债,诸如FFT和Matrix-Tree等的搞清楚了(啊我承认之前只会用,没有理解证明--),FFT老多人写,而Matri ...

  6. SPOJ.104.Highways([模板]Matrix Tree定理 生成树计数)

    题目链接 \(Description\) 一个国家有1~n座城市,其中一些城市之间可以修建高速公路(无自环和重边). 求有多少种方案,选择修建一些高速公路,组成一个交通网络,使得任意两座城市之间恰好只 ...

  7. HDU 4305 Lightning Matrix Tree定理

    题目链接:https://vjudge.net/problem/HDU-4305 解法:首先是根据两点的距离不大于R,而且中间没有点建立一个图.之后就是求生成树计数了. Matrix-Tree定理(K ...

  8. BZOJ.4894.天赋(Matrix Tree定理 辗转相除)

    题目链接 有向图生成树个数.矩阵树定理,复习下. 和无向图不同的是,度数矩阵改为入度矩阵/出度矩阵,分别对应外向树/内向树. 删掉第i行第i列表示以i为根节点的生成树个数,所以必须删掉第1行第1列. ...

  9. BZOJ.1016.[JSOI2008]最小生成树计数(Matrix Tree定理 Kruskal)

    题目链接 最小生成树有两个性质: 1.在不同的MST中某种权值的边出现的次数是一定的. 2.在不同的MST中,连接完某种权值的边后,形成的连通块的状态是一样的. \(Solution1\) 由这两个性 ...

随机推荐

  1. perl6文件操作

    use v6; #perl6中读取文件方法 #:r 只读, :w 只写, :rw 读写, :a 追加 my $fp = open 'filename.txt', :rw; for $fp.^metho ...

  2. 利用最新Apache解析漏洞(CVE-2017-15715)绕过上传黑名单

    转载自:https://www.leavesongs.com/PENETRATION/apache-cve-2017-15715-vulnerability.html 目标环境: 比如,目标存在一个上 ...

  3. 【EverydaySport】健身笔记——人体肌肉分解图

    正面 背面 大肌肉群:胸.背.腿大肌肉群. 建议一周锻炼一次. 小肌肉群:肩.二头肌.三头肌.小臂.小腿.腹肌小肌肉群. 可以一周安排两次. 小腿.小臂肌群属于耐受肌群可以一周安排3次. 建议初学者就 ...

  4. java基础 运算符

    算数运算符 加号:在操作数值.字符.字符串时其结果是不同的,当两个字符相加得到的是ASCII码表值, 当两个字符串相加时表示将两个字符串连接在一起,从而组成新的字符串. 除号:整数在使用除号操作时,得 ...

  5. 二叉查找树、平衡二叉树、红黑树、B-/B+树性能对比

    转载:https://blog.csdn.net/z702143700/article/details/49079107 前言:BST.AVL.RBT.B-tree都是动态结构,查找时间基本都在O(l ...

  6. 玩转excel===Excel处理txt文件中的数据,Excel中的分列处理

    我的txt文件数据是这样的,目标是用第一列的数据生成图表: 现在我需要拿到pss列,用Excel的操作如下,先用Excel打开txt文档 所有数据都在A列,单独拿出来第一列数字.这时候要选择分列: o ...

  7. Linux内核中内存cache的实现【转】

    Linux内核中内存cache的实现 转自:http://blog.chinaunix.net/uid-127037-id-2919545.html   本文档的Copyleft归yfydz所有,使用 ...

  8. 【LabVIEW技巧】工厂模式_简单工厂

    前言 上一个文章介绍了如何学习LabVIEW OOP,简要的提及了一些OOP学习中注意的事项,许多文章的读者反映写的太范,后文会逐步缩小范围,讨论在LabVIEW中各个模式的应用. 工厂模式概述 工厂 ...

  9. freemark学习

    学习地址: http://blog.csdn.net/hejinxu/article/details/6694890   对freemarker的用法与语法进行了详细的讲解 http://freema ...

  10. JS页面之间传值

    父页面与子页面之间有多种传值的方式: 第一种,通过window.open的方法打开一个新的页面,在新的页面里面通过window.opener来获取对象,以下为实例 父页面: function open ...