Pandas速查手册中文版(转)
关键缩写和包导入
在这个速查手册中,我们使用如下缩写:
df:任意的Pandas DataFrame对象
同时我们需要做如下的引入:
import pandas as pd
导入数据
- pd.read_csv(filename):从CSV文件导入数据
- pd.read_table(filename):从限定分隔符的文本文件导入数据
- pd.read_excel(filename):从Excel文件导入数据
- pd.read_sql(query, connection_object):从SQL表/库导入数据
- pd.read_json(json_string):从JSON格式的字符串导入数据
- pd.read_html(url):解析URL、字符串或者HTML文件,抽取其中的tables表格
- pd.read_clipboard():从你的粘贴板获取内容,并传给read_table()
- pd.DataFrame(dict):从字典对象导入数据,Key是列名,Value是数据
导出数据
- df.to_csv(filename):导出数据到CSV文件
- df.to_excel(filename):导出数据到Excel文件
- df.to_sql(table_name, connection_object):导出数据到SQL表
- df.to_json(filename):以Json格式导出数据到文本文件
创建测试对象
- pd.DataFrame(np.random.rand(20,5)):创建20行5列的随机数组成的DataFrame对象
- pd.Series(my_list):从可迭代对象my_list创建一个Series对象
- df.index = pd.date_range('1900/1/30', periods=df.shape[0]):增加一个日期索引
查看、检查数据
- df.head(n):查看DataFrame对象的前n行
- df.tail(n):查看DataFrame对象的最后n行
- df.shape():查看行数和列数
- http:// df.info():查看索引、数据类型和内存信息
- df.describe():查看数值型列的汇总统计
- s.value_counts(dropna=False):查看Series对象的唯一值和计数
- df.apply(pd.Series.value_counts):查看DataFrame对象中每一列的唯一值和计数
数据选取
- df[col]:根据列名,并以Series的形式返回列
- df[[col1, col2]]:以DataFrame形式返回多列
- s.iloc[0]:按位置选取数据
- s.loc['index_one']:按索引选取数据
- df.iloc[0,:]:返回第一行
- df.iloc[0,0]:返回第一列的第一个元素
数据清理
- df.columns = ['a','b','c']:重命名列名
- pd.isnull():检查DataFrame对象中的空值,并返回一个Boolean数组
- pd.notnull():检查DataFrame对象中的非空值,并返回一个Boolean数组
- df.dropna():删除所有包含空值的行
- df.dropna(axis=1):删除所有包含空值的列
- df.dropna(axis=1,thresh=n):删除所有小于n个非空值的行
- df.fillna(x):用x替换DataFrame对象中所有的空值
- s.astype(float):将Series中的数据类型更改为float类型
- s.replace(1,'one'):用‘one’代替所有等于1的值
- s.replace([1,3],['one','three']):用'one'代替1,用'three'代替3
- df.rename(columns=lambda x: x + 1):批量更改列名
- df.rename(columns={'old_name': 'new_ name'}):选择性更改列名
- df.set_index('column_one'):更改索引列
- df.rename(index=lambda x: x + 1):批量重命名索引
数据处理:Filter、Sort和GroupBy
- df[df[col] > 0.5]:选择col列的值大于0.5的行
- df.sort_values(col1):按照列col1排序数据,默认升序排列
- df.sort_values(col2, ascending=False):按照列col1降序排列数据
- df.sort_values([col1,col2], ascending=[True,False]):先按列col1升序排列,后按col2降序排列数据
- df.groupby(col):返回一个按列col进行分组的Groupby对象
- df.groupby([col1,col2]):返回一个按多列进行分组的Groupby对象
- df.groupby(col1)[col2]:返回按列col1进行分组后,列col2的均值
- df.pivot_table(index=col1, values=[col2,col3], aggfunc=max):创建一个按列col1进行分组,并计算col2和col3的最大值的数据透视表
- df.groupby(col1).agg(np.mean):返回按列col1分组的所有列的均值
- data.apply(np.mean):对DataFrame中的每一列应用函数np.mean
- data.apply(np.max,axis=1):对DataFrame中的每一行应用函数np.max
数据合并
- df1.append(df2):将df2中的行添加到df1的尾部
- df.concat([df1, df2],axis=1):将df2中的列添加到df1的尾部
- df1.join(df2,on=col1,how='inner'):对df1的列和df2的列执行SQL形式的join
数据统计
- df.describe():查看数据值列的汇总统计
- df.mean():返回所有列的均值
- df.corr():返回列与列之间的相关系数
- df.count():返回每一列中的非空值的个数
- df.max():返回每一列的最大值
- df.min():返回每一列的最小值
- df.median():返回每一列的中位数
- df.std():返回每一列的标准差
转自:http://www.qingpingshan.com/rjbc/dashuju/228593.html
Pandas速查手册中文版(转)的更多相关文章
- Pandas速查手册中文版
本文翻译自文章: Pandas Cheat Sheet - Python for Data Science ,同时添加了部分注解. 对于数据科学家,无论是数据分析还是数据挖掘来说,Pandas是一个非 ...
- 三、Pandas速查手册中文版
本文翻译自文章:Pandas Cheat Sheet - Python for Data Science,同时添加了部分注解. 对于数据科学家,无论是数据分析还是数据挖掘来说,Pandas是一个非常重 ...
- pandas速查手册(中文版)
本文翻译自文章:Pandas Cheat Sheet - Python for Data Science 对于数据科学家,无论是数据分析还是数据挖掘来说,Pandas是一个非常重要的Python包.它 ...
- 【转】Pandas速查手册中文版
本文翻译自文章:Pandas Cheat Sheet - Python for Data Science,同时添加了部分注解. 对于数据科学家,无论是数据分析还是数据挖掘来说,Pandas是一个非常重 ...
- Python——Pandas速查手册中文版
转自——http://blog.csdn.net/qq_33399185/article/details/60872853,非常感谢大神的整理! 还有图片版,转自——https://zhuanlan. ...
- 4、numpy+pandas速查手册
<Python数据分析常用手册>一.NumPy和Pandas篇 一.常用链接: 1.Python官网:https://www.python.org/2.各种库的whl离线安装包:http: ...
- 《zw版·Halcon-delphi系列原创教程》 zw版-Halcon常用函数Top100中文速查手册
<zw版·Halcon-delphi系列原创教程> zw版-Halcon常用函数Top100中文速查手册 Halcon函数库非常庞大,v11版有1900多个算子(函数). 这个Top版,对 ...
- 25个有用的和方便的 WordPress 速查手册
如果你是 WordPress 开发人员,下载一些方便的 WordPress 备忘单可以在你需要的时候快速查找.下面这个列表,我们已经列出了25个有用的和方便的 WordPress 速查手册,赶紧收藏吧 ...
- R之data.table速查手册
R语言data.table速查手册 介绍 R中的data.table包提供了一个data.frame的高级版本,让你的程序做数据整型的运算速度大大的增加.data.table已经在金融,基因工程学等领 ...
随机推荐
- 解决应用程序无法正常启动0xc0150002等问题
1.在程序运行出错的时候,右键“我的电脑”,然后点击“管理”→“事件查看器”→“Windows 日志”→“应用程序”,查看错误信息: 1> “E:\IPCam_share\ARP\數據處理\Hg ...
- ONTAK 2010 aut
Autostrady https://szkopul.edu.pl/problemset/problem/f2dSBM7JteWHqtmVejMWe1bW/site/?key=statement 题意 ...
- VINS(二)Feature Detection and Tracking
系统入口是feature_tracker_node.cpp文件中的main函数 1. 首先创建feature_tracker节点,从配置文件中读取信息(parameters.cpp),包括: ROS中 ...
- (转) 如何从 0 开始学 ruby on rails (漫步版)
原文:http://readful.com/post/12322300571/0-ruby-on-rails ruby 是一门编程语言,ruby on rails 是 ruby 的一个 web 框架, ...
- DSP5509的定时器实验-第2篇
1. 导入Easy5509开发板的例程EX02_TIME,5509有2个16位的定时器,有点少啊 2. 直接编译,提示找不到CSL.h,其实我也好奇,CSL库是从哪里来的?RTS库从哪里来的?头文件在 ...
- 关于 NPOI 导出的 Excel 出现“部分内容有问题” 的解决方法
近期发现使用 NPOI 导出的 Excel 文件,有部分用户反映在打开时报错,测试了一下,发现在低版本的 Office 中(2003版,配合2007格式兼容包)打开正常,但在高版本 Office 中, ...
- Bing wallpaper api
list: http://www.bing.com/HPImageArchive.aspx?format=js&idx=0&n=1&mkt=zh-cn idx:-1为明天,1为 ...
- java对象创建过程简介
这是看书的记录,字有点丑啊还是将就搬上来 -.-,等把后面看了完善图
- 七 Appium常用方法介绍
文本转自:http://www.cnblogs.com/sundalian/p/5629609.html 由于appium是扩展了Webdriver协议,所以可以使用webdriver提供的方法,比如 ...
- Objective-C 内存管理和ARC
内存管理 范围: 任何继承了NSObject的对象 对基本数据类型无效 原理: 每个对象内部都保存了一个与之相关联的整数 称为引用计数器 1.计数器的基本操作 当使用alloc new或者copy创建 ...