HDOJ 1423 Greatest Common Increasing Subsequence 【DP】【最长公共上升子序列】

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 8768 Accepted Submission(s): 2831

Problem Description

This is a problem from ZOJ 2432.To make it easyer,you just need output the length of the subsequence.

Input

Each sequence is described with M - its length (1 <= M <= 500) and M integer numbers Ai (-2^31 <= Ai < 2^31) - the sequence itself.

Output

output print L - the length of the greatest common increasing subsequence of both sequences.

Sample Input

1

5

1 4 2 5 -12

4

-12 1 2 4

Sample Output

2

题意

找出两个序列中的最长公共上升子序列

思路

动态规划

假如 a[i] != b[j]

那么毫无疑问 a[i] 对这个LCIS是毫无贡献的 所以 dp[i][j] = dp[i - 1][j];

如果a[i] == b[j]

那么 这个最长公共上升子序列的长度至少为1 并且 找出前面可以接的最长的LCIS的长度 + 1 就可以了

AC代码

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <deque>
#include <vector>
#include <queue>
#include <string>
#include <cstring>
#include <map>
#include <stack>
#include <set>
#include <cstdlib>
#include <ctype.h>
#include <numeric>
#include <sstream>
using namespace std;

typedef long long LL;
const double PI = 3.14159265358979323846264338327;
const double E = 2.718281828459;
const double eps = 1e-6;
const int MAXN = 0x3f3f3f3f;
const int MINN = 0xc0c0c0c0;
const int maxn = 1e2 * 5 + 5;
const int MOD = 1e9 + 7;
int a[maxn], b[maxn], dp[maxn][maxn];
int main()
{
    int t;
    cin >> t;
    while (t--)
    {
        int n, m;
        scanf(" %d", &n);
        int i, j, k;
        for (i = 0; i < n; i++)
            scanf("%d", &a[i]);
        scanf("%d", &m);
        for (i = 0; i < m; i++)
            scanf("%d", &b[i]);
        memset(dp, 0, sizeof(dp));
        int ans = 0;
        for (i = 0; i < n; i++)
        {
            for (j = 0; j < m; j++)
            {
                if (a[i] == b[j])
                {
                    int max_dp = 0;
                    for (k = 0; k < j; k++)
                    {
                        if (dp[i][k] > max_dp && b[j] > b[k])
                            max_dp = dp[i][k];
                    }
                    dp[i][j] += max_dp + 1;
                }
                else if (i)
                    dp[i][j] = dp[i - 1][j];
                if (dp[i][j] > ans)
                    ans = dp[i][j];
            }
        }
        cout << ans << endl;
        if (t)
            cout << endl;
    }
}

优化代码

#include <iostream>             //时间优化
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <deque>
#include <vector>
#include <queue>
#include <string>
#include <cstring>
#include <map>
#include <stack>
#include <set>
#include <cstdlib>
#include <ctype.h>
#include <numeric>
#include <sstream>
using namespace std;

typedef long long LL;
const double PI = 3.14159265358979323846264338327;
const double E = 2.718281828459;
const double eps = 1e-6;
const int MAXN = 0x3f3f3f3f;
const int MINN = 0xc0c0c0c0;
const int maxn = 1e2 * 5 + 5;
const int MOD = 1e9 + 7;
int a[maxn], b[maxn], dp[maxn][maxn];
int main()
{
    int t;
    cin >> t;
    while (t--)
    {
        int n, m;
        scanf(" %d", &n);
        int i, j, k;
        for (i = 0; i < n; i++)
            scanf("%d", &a[i]);
        scanf("%d", &m);
        for (i = 0; i < m; i++)
            scanf("%d", &b[i]);
        memset(dp, 0, sizeof(dp));
        int ans = 0;
        int max_dp;
        for (i = 0; i < n; i++)
        {
            max_dp = 0;
            for (j = 0; j < m; j++)
            {
                if (i)
                    dp[i][j] = dp[i - 1][j];
                if (a[i] > b[j] && dp[i][j] > max_dp)
                    max_dp = dp[i][j];
                if (a[i] == b[j])
                    dp[i][j] = max_dp + 1;
                if (dp[i][j] > ans)
                    ans = dp[i][j];
            }
        }
        cout << ans << endl;
        if (t)
            cout << endl;
    }
}

HDOJ 1423 Greatest Common Increasing Subsequence 【DP】【最长公共上升子序列】的更多相关文章

  1. ZOJ 2432 Greatest Common Increasing Subsequence(最长公共上升子序列+路径打印)

    Greatest Common Increasing Subsequence 题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problem ...

  2. HDOJ 1423 Greatest Common Increasing Subsequence(dp)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1423 思路分析:[问题定义]给定两个序列A[0, 1,..., m]和B[0, 1, ..., n], ...

  3. 【简单dp】poj 2127 Greatest Common Increasing Subsequence【最长公共上升子序列】【模板】

    Sample Input 5 1 4 2 5 -12 4 -12 1 2 4 Sample Output 2 1 4 题目:给你两个数字序列,求出这两个序列的最长公共上升子序列.输出最长的长度,并打表 ...

  4. HDOJ 1423 Greatest Common Increasing Subsequence -- 动态规划

    题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=1423 Problem Description This is a problem from ZOJ 2 ...

  5. HDU 1423 Greatest Common Increasing Subsequence(最长公共上升LCIS)

    HDU 1423 Greatest Common Increasing Subsequence(最长公共上升LCIS) http://acm.hdu.edu.cn/showproblem.php?pi ...

  6. POJ 1423 Greatest Common Increasing Subsequence【裸LCIS】

    链接: http://acm.hdu.edu.cn/showproblem.php?pid=1423 http://acm.hust.edu.cn/vjudge/contest/view.action ...

  7. HDU 1423 Greatest Common Increasing Subsequence LCIS

    题目链接: 题目 Greatest Common Increasing Subsequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: ...

  8. HDU 1423 Greatest Common Increasing Subsequence(LCIS)

    Greatest Common Increasing Subsequenc Problem Description This is a problem from ZOJ 2432.To make it ...

  9. HDUOJ ---1423 Greatest Common Increasing Subsequence(LCS)

    Greatest Common Increasing Subsequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536 ...

随机推荐

  1. SVN 提交出错:Attempted to lock an already-locked dir

    http://www.2cto.com/kf/201306/221414.html —————————————————————————————————————————————————————— 在ec ...

  2. c# 将html添加进剪贴板(带格式)

    调用: ClipboardHelper.CopyToClipboard("<h1>hello world</h1>", ""); /// ...

  3. java垃圾回收算法和垃圾收集器

    垃圾收集算法.垃圾回收算法.java垃圾收集器 目录1. 垃圾收集算法1)引用计数法2)根搜索法2. 垃圾回收算法1)复制算法2)标记-清除算法3)标记-整理算法4)分代收集算法3. java垃圾收集 ...

  4. java各个版本垃圾收集器?

    1.7G1

  5. 利用python输出000至999中间的数

    打造一个000-999的字典 ): : i = '+str(i) elif <=i and i<: i ='+str(i) else: i=str(i) with open('1.txt' ...

  6. OSX终端 命令行的一些基本操作

    本文转载至 http://blog.csdn.net/xdrt81y/article/details/24058959 osx终端命令 OSX终端 命令行的一些基本操作终端 命令行的一些基本操作很多朋 ...

  7. 5秒后跳转到另一个页面的js代码

    今天看视频学习时学习了一种新技术,即平时我们在一个页面点击“提交”或“确认”会自动跳转到一个页面. 在网上搜了一下,关于这个技术处理有多种方法,我只记下我在视频里学到的三种: 1.用一个respons ...

  8. 【BZOJ4504】K个串 可持久化线段树+堆

    [BZOJ4504]K个串 Description 兔子们在玩k个串的游戏.首先,它们拿出了一个长度为n的数字序列,选出其中的一个连续子串,然后统计其子串中所有数字之和(注意这里重复出现的数字只被统计 ...

  9. 教程less

    http://lesscss.cn/features/ Overview As an extension to CSS, Less is not only backwards compatible w ...

  10. Minecraft Forge编程入门三 “初始化项目结构和逻辑”

    经过前面两个教程Minecraft Forge编程入门一 "环境搭建"和Minecraft Forge编程入门二 "工艺和食谱",我们大体知道了如何自定义合成配 ...