HDOJ 1423 Greatest Common Increasing Subsequence 【DP】【最长公共上升子序列】

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 8768 Accepted Submission(s): 2831

Problem Description

This is a problem from ZOJ 2432.To make it easyer,you just need output the length of the subsequence.

Input

Each sequence is described with M - its length (1 <= M <= 500) and M integer numbers Ai (-2^31 <= Ai < 2^31) - the sequence itself.

Output

output print L - the length of the greatest common increasing subsequence of both sequences.

Sample Input

1

5

1 4 2 5 -12

4

-12 1 2 4

Sample Output

2

题意

找出两个序列中的最长公共上升子序列

思路

动态规划

假如 a[i] != b[j]

那么毫无疑问 a[i] 对这个LCIS是毫无贡献的 所以 dp[i][j] = dp[i - 1][j];

如果a[i] == b[j]

那么 这个最长公共上升子序列的长度至少为1 并且 找出前面可以接的最长的LCIS的长度 + 1 就可以了

AC代码

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <deque>
#include <vector>
#include <queue>
#include <string>
#include <cstring>
#include <map>
#include <stack>
#include <set>
#include <cstdlib>
#include <ctype.h>
#include <numeric>
#include <sstream>
using namespace std;

typedef long long LL;
const double PI = 3.14159265358979323846264338327;
const double E = 2.718281828459;
const double eps = 1e-6;
const int MAXN = 0x3f3f3f3f;
const int MINN = 0xc0c0c0c0;
const int maxn = 1e2 * 5 + 5;
const int MOD = 1e9 + 7;
int a[maxn], b[maxn], dp[maxn][maxn];
int main()
{
    int t;
    cin >> t;
    while (t--)
    {
        int n, m;
        scanf(" %d", &n);
        int i, j, k;
        for (i = 0; i < n; i++)
            scanf("%d", &a[i]);
        scanf("%d", &m);
        for (i = 0; i < m; i++)
            scanf("%d", &b[i]);
        memset(dp, 0, sizeof(dp));
        int ans = 0;
        for (i = 0; i < n; i++)
        {
            for (j = 0; j < m; j++)
            {
                if (a[i] == b[j])
                {
                    int max_dp = 0;
                    for (k = 0; k < j; k++)
                    {
                        if (dp[i][k] > max_dp && b[j] > b[k])
                            max_dp = dp[i][k];
                    }
                    dp[i][j] += max_dp + 1;
                }
                else if (i)
                    dp[i][j] = dp[i - 1][j];
                if (dp[i][j] > ans)
                    ans = dp[i][j];
            }
        }
        cout << ans << endl;
        if (t)
            cout << endl;
    }
}

优化代码

#include <iostream>             //时间优化
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <deque>
#include <vector>
#include <queue>
#include <string>
#include <cstring>
#include <map>
#include <stack>
#include <set>
#include <cstdlib>
#include <ctype.h>
#include <numeric>
#include <sstream>
using namespace std;

typedef long long LL;
const double PI = 3.14159265358979323846264338327;
const double E = 2.718281828459;
const double eps = 1e-6;
const int MAXN = 0x3f3f3f3f;
const int MINN = 0xc0c0c0c0;
const int maxn = 1e2 * 5 + 5;
const int MOD = 1e9 + 7;
int a[maxn], b[maxn], dp[maxn][maxn];
int main()
{
    int t;
    cin >> t;
    while (t--)
    {
        int n, m;
        scanf(" %d", &n);
        int i, j, k;
        for (i = 0; i < n; i++)
            scanf("%d", &a[i]);
        scanf("%d", &m);
        for (i = 0; i < m; i++)
            scanf("%d", &b[i]);
        memset(dp, 0, sizeof(dp));
        int ans = 0;
        int max_dp;
        for (i = 0; i < n; i++)
        {
            max_dp = 0;
            for (j = 0; j < m; j++)
            {
                if (i)
                    dp[i][j] = dp[i - 1][j];
                if (a[i] > b[j] && dp[i][j] > max_dp)
                    max_dp = dp[i][j];
                if (a[i] == b[j])
                    dp[i][j] = max_dp + 1;
                if (dp[i][j] > ans)
                    ans = dp[i][j];
            }
        }
        cout << ans << endl;
        if (t)
            cout << endl;
    }
}

HDOJ 1423 Greatest Common Increasing Subsequence 【DP】【最长公共上升子序列】的更多相关文章

  1. ZOJ 2432 Greatest Common Increasing Subsequence(最长公共上升子序列+路径打印)

    Greatest Common Increasing Subsequence 题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problem ...

  2. HDOJ 1423 Greatest Common Increasing Subsequence(dp)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1423 思路分析:[问题定义]给定两个序列A[0, 1,..., m]和B[0, 1, ..., n], ...

  3. 【简单dp】poj 2127 Greatest Common Increasing Subsequence【最长公共上升子序列】【模板】

    Sample Input 5 1 4 2 5 -12 4 -12 1 2 4 Sample Output 2 1 4 题目:给你两个数字序列,求出这两个序列的最长公共上升子序列.输出最长的长度,并打表 ...

  4. HDOJ 1423 Greatest Common Increasing Subsequence -- 动态规划

    题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=1423 Problem Description This is a problem from ZOJ 2 ...

  5. HDU 1423 Greatest Common Increasing Subsequence(最长公共上升LCIS)

    HDU 1423 Greatest Common Increasing Subsequence(最长公共上升LCIS) http://acm.hdu.edu.cn/showproblem.php?pi ...

  6. POJ 1423 Greatest Common Increasing Subsequence【裸LCIS】

    链接: http://acm.hdu.edu.cn/showproblem.php?pid=1423 http://acm.hust.edu.cn/vjudge/contest/view.action ...

  7. HDU 1423 Greatest Common Increasing Subsequence LCIS

    题目链接: 题目 Greatest Common Increasing Subsequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: ...

  8. HDU 1423 Greatest Common Increasing Subsequence(LCIS)

    Greatest Common Increasing Subsequenc Problem Description This is a problem from ZOJ 2432.To make it ...

  9. HDUOJ ---1423 Greatest Common Increasing Subsequence(LCS)

    Greatest Common Increasing Subsequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536 ...

随机推荐

  1. MongoDB 连接数高产生原因及解决

    MongoDB Sharding架构下连接数很容易达到很高,这里连接数分为几个概念:tcp 连接数 netstat可以统计的,一般这个是最高.如果mongod/mongos在同一台服务器,更明显.参考 ...

  2. 路由器port触发与转发---Port Forwarding &amp; Port Triggering

    What is Port Triggering? If you have not read my explanation of port forwarding do so now. You can f ...

  3. Openstack(Kilo)安装系列之Keystone(五)

    Create OpenStack client environment scripts To create the scripts Create client environment scripts ...

  4. datagrid使用要点

    table自适应: (fit:true(设置table)) 列自动撑开:fitColumns: true,注意给列的width属性赋值

  5. python进阶九_网络编程

    Python网络编程一 一.一些基本概念 在Python网络编程这一节中会涉及到非常多网络相关的术语.对于一些最主要的概念,如TCP/IP,Socket等等不再赘述,不明确的能够自己去查一查,对于一些 ...

  6. js 安全

    0x00 前言 在信息安全领域,可信系统(Trusted system)是一个让人心动的目标,它指的是一个通过实施特定的安全策略而达到一定可信程度的系统. 在计算机中,可信平台模块(Trusted P ...

  7. WPF数据验证(4)——响应与获取验证错误

    1780 前面的示例中,有关用户接受到错误的唯一指示是在违反规则的文本框周围的红色轮廓.为了提供更多信息,可以处理 Error 事件,但存储或清除错误时会引发该事件,但前提是必须确保已将 Bindin ...

  8. iOS - 导航栏UINavigationController经常使用属性

    1.设置导航栏标题 self.title = @"dylan_李伟宾"; 2.设置导航栏样式 设置方法: [self.navigationController.navigation ...

  9. 在odl中怎样实现rpc

    opendaylight作为sdn主要开源项目,採用osgi框架.已经得到非常多厂商的支持.氦版本号也公布在即. 以下介绍一下在odl中怎样实现rpc. odl使用yang作为model模型定义文件. ...

  10. 第二课——解析mysqldump命令和mysqlbinlog命令+innodb和Myisam存储引擎简介

    环境说明 mysql版本:Percona-Server-5.6.30 IP:10.7.15.167 端口:3306 安装目录:/httx/run/mysql 数据目录:/httx/run/mysql/ ...