Updating....
这几个玩意儿要记的东西太多太乱所以写blog整理一下
虽然蒯的成分会比较多全部
我居然开始记得写blog了??

第一类

这里讨论的是无符号类型的。
OEIS编号A130534

表示方法

\(s(n,m)\)或者\(\begin{bmatrix}n \\ m\end{bmatrix}\)
注意前者是小写s

意义

\(n\)个元素的项目分作\(m\)个非空环排列的方法数目

求法

递归求解法
\[\begin{bmatrix}n\\m\end{bmatrix}=\begin{bmatrix}n-1\\m-1\end{bmatrix}+(n-1)\begin{bmatrix}n-1\\m\end{bmatrix}\]
这个就是说新建一个环排列或者插入已有的环排列
可怕 这很\(O(n^2)\)

各种性质

\(\begin{bmatrix}n\\1\end{bmatrix}=(n-1)!\)
\(\begin{bmatrix}n\\2\end{bmatrix}=(n-1)!\times\sum_{i=1}^{n-1}\frac 1 i\)
\(\sum_{i=0}^n \begin{bmatrix}n\\i\end{bmatrix}=n!\)
\(\begin{bmatrix}n\\n-1\end{bmatrix}=\binom{n}{2}\)
这里就不给出证明了
别的地方都有
也挺好记好想的
maybe

第二类

OEIS编号A008277

表示方法

\(S(n,m)\)或者\(\left\{\begin{matrix}n \\ m\end{matrix}\right\}\)
当然这里是大写S

意义

\(n\)个元素的集定义\(m\)个等价类的方法数目
。。。wiki害人
就是从环排列变成集合划分了
当然也要保证非空

求法

递归求解法
\[\begin{Bmatrix}n\\m\end{Bmatrix}=\begin{Bmatrix}n-1\\m-1\end{Bmatrix}+m\begin{Bmatrix}n-1\\m\end{Bmatrix}\]
同样也可以解释,新建or插入已有的
再次\(O(n^2)\)??别啊
幸好这玩意儿能搞容斥,通项就有了
\[\begin{Bmatrix}n\\m\end{Bmatrix}=\frac{1}{m!}\sum\limits_{k=0}^{m}(-1)^k\binom{m}{k}(m-k)^n\]
\(O(n)\)求解不是梦
好吧只求一个用这个会快
最重要的是这个能卷,也好搞些别的???
稍微整理一下
\[\left\{\begin{matrix}n\\m\end{matrix}\right\}=\sum_{k=0}^m\frac{(-1)^k}{k!}\frac{(m-k)^n}{(m-k)!}\]
就很舒服

Stirling 反演

两个柿子挺好记
但我暂时还搞不清具体是干嘛的。。。
\[f(x) = \sum_{i=0}^x \begin{Bmatrix}x\\i\end{Bmatrix} g(i) \Leftrightarrow g(x) = \sum_{i=0}^x (-1) ^ {x - i}\begin{bmatrix}x\\i\end{bmatrix} f(i)\]
\[f(x) = \sum_{i=0}^x \begin{bmatrix}x\\i\end{bmatrix} g(i) \Leftrightarrow g(x) = \sum_{i=0}^x (-1) ^ {x - i}\begin{Bmatrix}x\\i\end{Bmatrix} f(i)\]

Bell数

OEIS编号A000110
就是把第二类stirling数的集合划分个数限制去掉了
只限制了基数
也就是
\[B_n=\sum_{i=0}^n\begin{Bmatrix}n\\i\end{Bmatrix}\]
当然也可以直接\(O(n)\)递推
\[B_{n+1}=\sum_{k=0}^n\binom{n}{k}B_{k}\]

参考

%%%
https://www.cnblogs.com/NaVi-Awson/p/9242645.html
https://www.cnblogs.com/ezoiLZH/p/9424911.html
https://www.cnblogs.com/owenyu/p/6724661.html
https://blog.csdn.net/winycg/article/details/70233717

Stirling数笔记的更多相关文章

  1. lightOJ 1326 Race(第二类Stirling数)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1326 题意:有n匹马赛跑.问有多少种不同的排名结果.可以有多匹马的排名相同. 思路:排 ...

  2. 斯特灵数 (Stirling数)

    @维基百科 在组合数学,Stirling数可指两类数,都是由18世纪数学家James Stirling提出的. 第一类 s(4,2)=11 第一类Stirling数是有正负的,其绝对值是个元素的项目分 ...

  3. hdu 4372 第一类stirling数的应用/。。。好题

    /** 大意: 给定一系列楼房,都在一条水平线上,高度从1到n,从左侧看能看到f个, 从右侧看,能看到b个,问有多少种这样的序列.. 思路: 因为肯定能看到最高的,,那我们先假定最高的楼房位置确定,那 ...

  4. HDU 3625 Examining the Rooms:第一类stirling数

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3625 题意: 有n个房间,每个房间里放着一把钥匙,对应能开1到n号房间的门. 除了1号门,你可以踹开任 ...

  5. HDU 4372 Count the Buildings:第一类Stirling数

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4372 题意: 有n栋高楼横着排成一排,各自的高度为1到n的一个排列. 从左边看可以看到f栋楼,从右边看 ...

  6. 整理一点与排列组合有关的问题[组合数 Stirling数 Catalan数]

    都是数学题 思维最重要,什么什么数都没用,DP直接乱搞(雾.. 参考LH课件,以及资料:http://daybreakcx.is-programmer.com/posts/17315.html 做到有 ...

  7. [总结] 第二类Stirling数

    上一道例题 我们来介绍第二类Stirling数 定义 第二类Stirling数实际上是集合的一个拆分,表示将n个不同的元素拆分成m个集合的方案数,记为 或者 .和第一类Stirling数不同的是,集合 ...

  8. Bell(hdu4767+矩阵+中国剩余定理+bell数+Stirling数+欧几里德)

    Bell Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status  ...

  9. 贝尔数(来自维基百科)& Stirling数

    贝尔数   贝尔数以埃里克·坦普尔·贝尔(Eric Temple Bell)为名,是组合数学中的一组整数数列,开首是(OEIS的A000110数列):   Bell Number Bn是基数为n的集合 ...

随机推荐

  1. svn升级(mac)

    原文链接:http://www.jianshu.com/p/c81712ecccb8 升级前 svn版本1.7.20 升级之后 1.9.2 步骤: 1. 下载最新版svn,链接:http://www. ...

  2. VBA基础之Excel VBA 表格的操作(一)

    一.Excel VBA 表格的操作1. Excel表格的指定以及表格属性的设置 Sub main() '把表格B2的值改为"VBA Range和Cells函数" Range(&qu ...

  3. 自测之Lesson3:makefile

    题目:编写一个makefile文件,要求编译当前目录内的所有.c文件. 完成代码: .PHONY:clean all SRC=$(wildcard *.c) BIN=$(SRC:%.c=%) all: ...

  4. [core python programming]chapter 7 programming MS office

    excel.pyw会有问题,解决如下: 因为python3x中没有tkMessageBox模块,Tkinter改成了tkinter你可以查看你的py当前支持的模块.在交互式命令行下输入>> ...

  5. iOS- 给App添加内购& 验证购买iOS7新特性

    1.内购——应用内购买 我所说的内购——也可以说是应用内购买 大家都知道通过苹果应用程序商店有三种主要赚钱的方式: 1.直接收费(与国内大部分用户的消费习惯相悖,如果要收费,直接收高的,别收6块钱) ...

  6. Swift-闭包理解

    /* 闭包(Closures) * 闭包是自包含的功能代码块,可以在代码中使用或者用来作为参数传值. * 在Swift中的闭包与C.OC中的blocks和其它编程语言(如Python)中的lambda ...

  7. hibernate.cfg.xml的详细解释

    <!--标准的XML文件的起始行,version='1.0'表明XML的版本,encoding='gb2312'表明XML文件的编码方式-->                    < ...

  8. IPython 4.0发布:Jupyter和IPython分离后的首个版本

    IPython 4.0日前正式发布,这是IPython分离成IPython和Jupyter后的第一个重要版本. 更新Jupyter的快捷方式是: pip install --upgrade jupyt ...

  9. [洛谷P4035][JSOI2008]球形空间产生器

    题目大意:给你$n$个点坐标,要你求出圆心 题解:随机化,可以随机一个点当圆心,然后和每个点比较,求出平均距离$r$,如果到这个点的距离大于$r$,说明离这个点远了,就给圆心施加一个向这个点的力:若小 ...

  10. 【Codeforces Round #404 (Div. 2)】题解

    A. Anton and Polyhedrons 直接统计+答案就可以了. #include<cstdio> #include<cstring> #include<alg ...