[BZOJ1101&BZOJ2301][POI2007]Zap [HAOI2011]Problem b|莫比乌斯反演
对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d。
我们可以令F[n]=使得n|(x,y)的数对(x,y)个数
这个很容易得到,只需要让x,y中都有n这个因子就好了,也就是[a/n]*[b/n]个数对(向下取整)
然后设题中所要求的为f[n],很容易得知,F[n]=∑f[d](n|d)
莫比乌斯反演可以得到f[n]=∑μ(d/n)F[d](n|d)
这样是O(n),然而数据范围5*10^4显然不能通过
f[n]=∑μ(d/n)[a/d][b/d](n|d)
这个式子停止的条件是a/d=0或者b/d=0
令m=min(a/n,b/n)
f[n]=∑μ(i)[a/(i*n)][b/(i*n)](1<=i<=m)
然后可以通过一些方法证明[a/(i*n)] = [[a/i]/n]
毕竟弱.证明得这么差..
证明:[n/(a*b)]=[[n/a]/b]
设[n/a]=(n-x)/a (x<a)
设[[n/a]/b]=((n-x)/a-y)/b (y<b)
[[n/a]/b]=(n-x-ay)/ab,设[n/(a*b)]=(n-e)/ab
设二者不等,即(n-x-ay)/ab+t=(n-e)/ab(t>=1)
x+ay=e+tab
x-e=a(tb-y)
∵a>0,b>y ∴a(tb-y)>0
而x是n/a的余数,e是n/ab的余数,显然e>=x,x-e<=0,矛盾
所以[a/(i*n)] = [[a/i]/n]
然后直接枚举每一个可能的[a/(i*n)][b/(i*n)]的取值就好了
莫比乌斯函数用前缀和累计
BZOJ1101交了22发...创了个人记录啊..
Pas错误不明..后来改用C++,是因为!i mod prime[j]这里没有加括号..用==0就不会错了...
BZOJ2301
容斥将一个问题拆分成四个子问题即可
[BZOJ1101&BZOJ2301][POI2007]Zap [HAOI2011]Problem b|莫比乌斯反演的更多相关文章
- [POI2007]ZAP-Queries && [HAOI2011]Problem b 莫比乌斯反演
1,[POI2007]ZAP-Queries ---题面---题解: 首先列出式子:$$ans = \sum_{i = 1}^{n}\sum_{j = 1}^{m}[gcd(i, j) == d]$$ ...
- BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 4032 Solved: 1817[Submit] ...
- BZOJ2301: [HAOI2011]Problem b 莫比乌斯反演
分析:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 然后对于求这样单个的gcd(x,y)=k的, ...
- P2522 [HAOI2011]Problem b (莫比乌斯反演)
题目 P2522 [HAOI2011]Problem b 解析: 具体推导过程同P3455 [POI2007]ZAP-Queries 不同的是,这个题求的是\(\sum_{i=a}^b\sum_{j= ...
- Bzoj 2301: [HAOI2011]Problem b(莫比乌斯反演+除法分块)
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Description 对于给出的n个询问,每次求有多少个数对(x, ...
- BZOJ 2301: [HAOI2011]Problem b 莫比乌斯反演
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 1007 Solved: 415[Submit][ ...
- BZOJ.2301.[HAOI2011]Problem B(莫比乌斯反演 容斥)
[Update] 我好像现在都看不懂我当时在写什么了=-= \(Description\) 求\(\sum_{i=a}^b\sum_{j=c}^d[(i,j)=k]\) \(Solution\) 首先 ...
- BZOJ 2301 [HAOI2011]Problem b ——莫比乌斯反演
分成四块进行计算,这是显而易见的.(雾) 然后考虑计算$\sum_{i=1}^n|sum_{j=1}^m gcd(i,j)=k$ 首先可以把n,m/=k,就变成统计&i<=n,j< ...
- 洛谷P2522 [HAOI2011]Problem b(莫比乌斯反演)
题目描述 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 输入输出格式 输入格式: 第一行一个整数 ...
随机推荐
- lintcode-14-二分查找
二分查找 给定一个排序的整数数组(升序)和一个要查找的整数target,用O(logn)的时间查找到target第一次出现的下标(从0开始),如果target不存在于数组中,返回-1. 样例 在数组 ...
- Spring Boot(六)自定义事件及监听
事件及监听并不是SpringBoot的新功能,Spring框架早已提供了完善的事件监听机制,在Spring框架中实现事件监听的流程如下: 自定义事件,继承org.springframework.con ...
- ZOJ 1909 I-Square
https://vjudge.net/contest/67836#problem/I Given a set of sticks of various lengths, is it possible ...
- Zabbix监控配置
Zabbix在线文档 https://www.zabbix.com/documentation/4.0/zh/manual/config/hosts 1.我们启动服务后,我们看到了端口都正在监听,但是 ...
- Hessian矩阵【转】
http://blog.sina.com.cn/s/blog_7e1ecaf30100wgfw.html 在数学中,海塞矩阵是一个自变量为向量的实值函数的二阶偏导数组成的方块矩阵,一元函数就是二阶导, ...
- f-measure[转]
F-Measure又称为F-Score,是IP(信息检索)领域常用的一个评价标准,计算公式为: 其中β是参数,P是准确率(Precision),R是召回率(Recall). F1-Measure:当参 ...
- HttpServletRequestWrapper 是HttpServletRequest的包装类 ·关系相当于 int 与integer的关系
HttpServletRequestWrapper 是HttpServletRequest的包装类 ·关系相当于 int 与integer的关系
- CentOS 文件及目录等
1.在linux中一切皆是文件,只是类型不同,通过ls -l看到的一个字母表示文件的类型 -:普通文件. d:目录文件. l:链接文件. b:块设备文件. c:字符设备文件. p:管道文件. 2.文件 ...
- 【刷题】BZOJ 4827 [Hnoi2017]礼物
Description 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在 ...
- BZOJ2555:SubString——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=2555 (1):在当前字符串的后面插入一个字符串 (2):询问字符串s在当前字符串中出现了几次?(作 ...