BZOJ 4028: [HEOI2015]公约数数列 分块
4028: [HEOI2015]公约数数列
题目连接:
http://www.lydsy.com/JudgeOnline/problem.php?id=4028
Description
设计一个数据结构. 给定一个正整数数列 a_0, a_1, ..., a_{n - 1},你需要支持以下两种操作:
- MODIFY id x: 将 a_{id} 修改为 x.
- QUERY x: 求最小的整数 p (0 <= p < n),使得 gcd(a_0, a_1, ..., a_p) * XOR(a_0, a_1, ..., a_p) = x. 其中 XOR(a_0, a_1, ..., a_p) 代表 a_0, a_1, ..., a_p 的异或和,gcd表示最大公约数。
Input
输入数据的第一行包含一个正整数 n.
接下来一行包含 n 个正整数 a_0, a_1, ..., a_{n - 1}.
之后一行包含一个正整数 q,表示询问的个数。
之后 q 行,每行包含一个询问。格式如题目中所述。
Output
对于每个 QUERY 询问,在单独的一行中输出结果。如果不存在这样的 p,输出 no.
Sample Input
10
1353600 5821200 10752000 1670400 3729600 6844320 12544000 117600 59400 640
10
MODIFY 7 20321280
QUERY 162343680
QUERY 1832232960000
MODIFY 0 92160
QUERY 1234567
QUERY 3989856000
QUERY 833018560
MODIFY 3 8600
MODIFY 5 5306112
QUERY 148900352
Sample Output
6
0
no
2
8
8
Hint
对于 100% 的数据,n <= 100000,q <= 10000,a_i <= 10^9 (0 <= i < n),QUERY x 中的 x <= 10^18,MODIFY id x 中的 0 <= id < n,1 <= x <= 10^9.
题意
题解:
这种乱七八糟的修改,一般就是分块了……
根据前缀GCD,肯定GCD在不断的减小的,而且每次减小最少都是除以2的
所以前缀gcd的种类最多logn种
于是我们就分块搞
那hash表把每一块的xor都存下来
如果这一块内的gcd不变的话,我就直接拿这一块的hash表去查询就好了
如果gcd变化了,就直接暴力这一块
复杂度是n*sqrtn*logn(其实我感觉这个复杂度和暴力没啥区别
在bzoj上map会tle,所以我用的set
代码
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e5+7;
int a[maxn];
int l[1000],r[1000];
int block,num,belong[maxn];
int Gcd[maxn],Xor[maxn];
set<int> S[1000];
int gcd(int a,int b)
{
if(b==0)return a;
return gcd(b,a%b);
}
void build(int t)
{
S[t].clear();
Gcd[l[t]]=a[l[t]],Xor[l[t]]=a[l[t]];
S[t].insert(Xor[l[t]]);
for(int i=l[t]+1;i<=r[t];i++)
{
Gcd[i]=gcd(Gcd[i-1],a[i]),Xor[i]=Xor[i-1]^a[i];
S[t].insert(Xor[i]);
}
}
int main()
{
int n;
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
block=(int)sqrt(n+0.5);
num = n/block;
if(n%block)num++;
for(int i=1;i<=num;i++)
l[i]=(i-1)*block+1,r[i]=i*block;
r[num]=n;
for(int i=1;i<=n;i++)
belong[i]=(i-1)/block+1;
for(int i=1;i<=num;i++)
build(i);
int q;scanf("%d",&q);
while(q--)
{
char s[10];
scanf("%s",s);
if(s[0]=='M')
{
int x,y;
scanf("%d%d",&x,&y);x++;
a[x]=y;build(belong[x]);
}
else
{
long long x;scanf("%lld",&x);
int flag = 0,Lgcd=0,Lxor=0;
for(int i=1;i<=num;i++)
{
int T = gcd(Lgcd,Gcd[r[i]]);
if(T!=Lgcd)
{
for(int j=l[i];j<=r[i];j++)
if((long long)(Xor[j]^Lxor)*(long long)(gcd(Lgcd,Gcd[j]))==x)
{
flag = j;
break;
}
if(flag>0)break;
}
else
{
if(x%T==0&&S[i].count((int)(x/T)^Lxor))
{
for(int j=l[i];j<=r[i];j++)
if((long long)(Xor[j]^Lxor)*(long long)(gcd(Lgcd,Gcd[j]))==x)
{
flag = j;
break;
}
if(flag>0)break;
}
}
Lgcd = T,Lxor^=Xor[r[i]];
}
if(flag>0)
printf("%d\n",flag-1);
else
printf("no\n");
}
}
}
BZOJ 4028: [HEOI2015]公约数数列 分块的更多相关文章
- BZOJ 4028: [HEOI2015]公约数数列 【分块 + 前缀GCD】
任意门:https://www.lydsy.com/JudgeOnline/problem.php?id=4028 4028: [HEOI2015]公约数数列 Time Limit: 10 Sec ...
- bzoj 4028 : [HEOI2015]公约数数列
之前看了好几次都没什么思路,今天下定决心把这题切了. 观察到$0-x$的gcd最多变化log次,因为它每次变化一定至少要去掉一个质因子,所以我们可以枚举gcd. 因为数据范围比较小,所以想到了分块. ...
- 【BZOJ4028】[HEOI2015]公约数数列 分块
[BZOJ4028][HEOI2015]公约数数列 Description 设计一个数据结构. 给定一个正整数数列 a_0, a_1, ..., a_{n - 1},你需要支持以下两种操作: 1. M ...
- [BZOJ4028][HEOI2015]公约数数列(分块)
先发掘性质: 1.xor和gcd均满足交换律与结合率. 2.前缀gcd最多只有O(log)个. 但并没有什么数据结构能同时利用这两个性质,结合Q=10000,考虑分块. 对每块记录这几个信息: 1.块 ...
- 【BZOJ4028】[HEOI2015]公约数数列(分块)
[BZOJ4028][HEOI2015]公约数数列(分块) 题面 BZOJ 洛谷 题解 看一道题目就不会做系列 首先\(gcd\)最多只会有\(log\)种取值,所以我们可以暴力枚举出所有可能的\(g ...
- 洛谷 P4108 / loj 2119 [HEOI2015] 公约数数列 题解【分块】
看样子分块题应该做的还不够. 题目描述 设计一个数据结构. 给定一个正整数数列 \(a_0, a_1, \ldots , a_{n-1}\),你需要支持以下两种操作: MODIFY id x: 将 \ ...
- BZOJ4028 HEOI2015公约数数列(分块)
前缀gcd的变化次数是log的,考虑对每一种gcd查询,问题变为查询一段区间是否存在异或前缀和=x/gcd. 无修改的话显然可以可持久化trie,但这玩意实在没法支持修改.于是考虑分块. 对于每一块将 ...
- bzoj4028: [HEOI2015]公约数数列
Description 设计一个数据结构. 给定一个正整数数列 a_0, a_1, ..., a_{n - 1},你需要支持以下两种操作: 1. MODIFY id x: 将 a_{id} 修改为 x ...
- luogu P4108 [HEOI2015]公约数数列——solution
-by luogu 不会啊.... 然后%了一发题解, 关键是 考虑序列{$a_n$}的前缀gcd序列, 它是单调不升的,且最多只会改变$log_2N$次,因为每变一次至少除2 于是,当我们询问x时: ...
随机推荐
- vue基本介绍
https://cn.vuejs.org/v2/guide/ Vue (读音 /vjuː/,类似于 view) 是一套用于构建用户界面的渐进式框架.与其它大型框架不同的是,Vue 被设计为可以自底向上 ...
- 《LINUX3.0内核源代码分析》第二章:中断和异常 【转】
转自:http://blog.chinaunix.net/uid-25845340-id-2982887.html 摘要:第二章主要讲述linux如何处理ARM cortex A9多核处理器的中断.异 ...
- python近期遇到的一些面试问题(二)
1. 解释什么是栈溢出,在什么情况下可能出现. 栈溢出是由于C语言系列没有内置检查机制来确保复制到缓冲区的数据不得大于缓冲区的大小,因此当这个数据足够大的时候,将会溢出缓冲区的范围.在Python中, ...
- 【bzoj2006】NOI2010超级钢琴
补了下前置技能…… 题意就是求一段区间的权值和前k大的子序列的和. 把段扔进优先队列 每次拿出来之后按照所选择的j进行分裂 #include<bits/stdc++.h> #define ...
- java多线程以及Android多线程
Java 多线程 线程和进程的区别 线程和进程的本质:由CPU进行调度的并发式执行任务,多个任务被快速轮换执行,使得宏观上具有多个线程或者进程同时执行的效果. 进程:在操作系统来说,一个运行的程序或者 ...
- Leetcode 之Wildcard Matching(32)
跟上题类似,主要考虑‘*’的匹配问题.如果遇到‘*’,则跳过继续匹配,如果不匹配,则s++,重新扫描. bool isMatch2(const char *s, const char *p) { if ...
- swagger关闭生产访问
通过profile注解来处理. Swagger的congif类上声明@Profile({"dev", "test"}),发布到生产上使用product的prof ...
- springmvc3 拦截器,过滤ajax请求,判断用户登录,拦截规则设置
web.xml设置:(/拦截所有请求) <servlet> <servlet-name>dispatcher</servlet-name> <servlet- ...
- linux命令(35):head命令
1.命令格式: head [参数]... [文件]... 2.命令功能: head 用来显示档案的开头至标准输出中,默认head命令打印其相应文件的开头10行. 3.命令参数: -q 隐藏文件名 -v ...
- 一、python基础相关知识体系
python基础 a. Python(解释型语言.弱类型语言)和其他语言的区别? 一.编译型语言:一次性,将全部的程序编译成二进制文件,然后在运行.(c,c++ ,go) 运行速度快.开发效率低 二. ...