BZOJ 4028: [HEOI2015]公约数数列 分块
4028: [HEOI2015]公约数数列
题目连接:
http://www.lydsy.com/JudgeOnline/problem.php?id=4028
Description
设计一个数据结构. 给定一个正整数数列 a_0, a_1, ..., a_{n - 1},你需要支持以下两种操作:
- MODIFY id x: 将 a_{id} 修改为 x.
- QUERY x: 求最小的整数 p (0 <= p < n),使得 gcd(a_0, a_1, ..., a_p) * XOR(a_0, a_1, ..., a_p) = x. 其中 XOR(a_0, a_1, ..., a_p) 代表 a_0, a_1, ..., a_p 的异或和,gcd表示最大公约数。
Input
输入数据的第一行包含一个正整数 n.
接下来一行包含 n 个正整数 a_0, a_1, ..., a_{n - 1}.
之后一行包含一个正整数 q,表示询问的个数。
之后 q 行,每行包含一个询问。格式如题目中所述。
Output
对于每个 QUERY 询问,在单独的一行中输出结果。如果不存在这样的 p,输出 no.
Sample Input
10
1353600 5821200 10752000 1670400 3729600 6844320 12544000 117600 59400 640
10
MODIFY 7 20321280
QUERY 162343680
QUERY 1832232960000
MODIFY 0 92160
QUERY 1234567
QUERY 3989856000
QUERY 833018560
MODIFY 3 8600
MODIFY 5 5306112
QUERY 148900352
Sample Output
6
0
no
2
8
8
Hint
对于 100% 的数据,n <= 100000,q <= 10000,a_i <= 10^9 (0 <= i < n),QUERY x 中的 x <= 10^18,MODIFY id x 中的 0 <= id < n,1 <= x <= 10^9.
题意
题解:
这种乱七八糟的修改,一般就是分块了……
根据前缀GCD,肯定GCD在不断的减小的,而且每次减小最少都是除以2的
所以前缀gcd的种类最多logn种
于是我们就分块搞
那hash表把每一块的xor都存下来
如果这一块内的gcd不变的话,我就直接拿这一块的hash表去查询就好了
如果gcd变化了,就直接暴力这一块
复杂度是n*sqrtn*logn(其实我感觉这个复杂度和暴力没啥区别
在bzoj上map会tle,所以我用的set
代码
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e5+7;
int a[maxn];
int l[1000],r[1000];
int block,num,belong[maxn];
int Gcd[maxn],Xor[maxn];
set<int> S[1000];
int gcd(int a,int b)
{
if(b==0)return a;
return gcd(b,a%b);
}
void build(int t)
{
S[t].clear();
Gcd[l[t]]=a[l[t]],Xor[l[t]]=a[l[t]];
S[t].insert(Xor[l[t]]);
for(int i=l[t]+1;i<=r[t];i++)
{
Gcd[i]=gcd(Gcd[i-1],a[i]),Xor[i]=Xor[i-1]^a[i];
S[t].insert(Xor[i]);
}
}
int main()
{
int n;
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
block=(int)sqrt(n+0.5);
num = n/block;
if(n%block)num++;
for(int i=1;i<=num;i++)
l[i]=(i-1)*block+1,r[i]=i*block;
r[num]=n;
for(int i=1;i<=n;i++)
belong[i]=(i-1)/block+1;
for(int i=1;i<=num;i++)
build(i);
int q;scanf("%d",&q);
while(q--)
{
char s[10];
scanf("%s",s);
if(s[0]=='M')
{
int x,y;
scanf("%d%d",&x,&y);x++;
a[x]=y;build(belong[x]);
}
else
{
long long x;scanf("%lld",&x);
int flag = 0,Lgcd=0,Lxor=0;
for(int i=1;i<=num;i++)
{
int T = gcd(Lgcd,Gcd[r[i]]);
if(T!=Lgcd)
{
for(int j=l[i];j<=r[i];j++)
if((long long)(Xor[j]^Lxor)*(long long)(gcd(Lgcd,Gcd[j]))==x)
{
flag = j;
break;
}
if(flag>0)break;
}
else
{
if(x%T==0&&S[i].count((int)(x/T)^Lxor))
{
for(int j=l[i];j<=r[i];j++)
if((long long)(Xor[j]^Lxor)*(long long)(gcd(Lgcd,Gcd[j]))==x)
{
flag = j;
break;
}
if(flag>0)break;
}
}
Lgcd = T,Lxor^=Xor[r[i]];
}
if(flag>0)
printf("%d\n",flag-1);
else
printf("no\n");
}
}
}
BZOJ 4028: [HEOI2015]公约数数列 分块的更多相关文章
- BZOJ 4028: [HEOI2015]公约数数列 【分块 + 前缀GCD】
任意门:https://www.lydsy.com/JudgeOnline/problem.php?id=4028 4028: [HEOI2015]公约数数列 Time Limit: 10 Sec ...
- bzoj 4028 : [HEOI2015]公约数数列
之前看了好几次都没什么思路,今天下定决心把这题切了. 观察到$0-x$的gcd最多变化log次,因为它每次变化一定至少要去掉一个质因子,所以我们可以枚举gcd. 因为数据范围比较小,所以想到了分块. ...
- 【BZOJ4028】[HEOI2015]公约数数列 分块
[BZOJ4028][HEOI2015]公约数数列 Description 设计一个数据结构. 给定一个正整数数列 a_0, a_1, ..., a_{n - 1},你需要支持以下两种操作: 1. M ...
- [BZOJ4028][HEOI2015]公约数数列(分块)
先发掘性质: 1.xor和gcd均满足交换律与结合率. 2.前缀gcd最多只有O(log)个. 但并没有什么数据结构能同时利用这两个性质,结合Q=10000,考虑分块. 对每块记录这几个信息: 1.块 ...
- 【BZOJ4028】[HEOI2015]公约数数列(分块)
[BZOJ4028][HEOI2015]公约数数列(分块) 题面 BZOJ 洛谷 题解 看一道题目就不会做系列 首先\(gcd\)最多只会有\(log\)种取值,所以我们可以暴力枚举出所有可能的\(g ...
- 洛谷 P4108 / loj 2119 [HEOI2015] 公约数数列 题解【分块】
看样子分块题应该做的还不够. 题目描述 设计一个数据结构. 给定一个正整数数列 \(a_0, a_1, \ldots , a_{n-1}\),你需要支持以下两种操作: MODIFY id x: 将 \ ...
- BZOJ4028 HEOI2015公约数数列(分块)
前缀gcd的变化次数是log的,考虑对每一种gcd查询,问题变为查询一段区间是否存在异或前缀和=x/gcd. 无修改的话显然可以可持久化trie,但这玩意实在没法支持修改.于是考虑分块. 对于每一块将 ...
- bzoj4028: [HEOI2015]公约数数列
Description 设计一个数据结构. 给定一个正整数数列 a_0, a_1, ..., a_{n - 1},你需要支持以下两种操作: 1. MODIFY id x: 将 a_{id} 修改为 x ...
- luogu P4108 [HEOI2015]公约数数列——solution
-by luogu 不会啊.... 然后%了一发题解, 关键是 考虑序列{$a_n$}的前缀gcd序列, 它是单调不升的,且最多只会改变$log_2N$次,因为每变一次至少除2 于是,当我们询问x时: ...
随机推荐
- Win7(64bit)搭建SVN
开始: 第一步:下载SVN客户端程序TortoiseSVN并安装(不习惯英文操作界面的顺便在最底下下载一个语言包),下载地址tortoiseSVN下载(由于系统是64位的,我下载的是TortoiseS ...
- 64_k2
kf5-libkdepim-akonadi-17.04.1-1.fc26.x86_64.rpm 25-May-2017 12:22 177198 kf5-libkdepim-devel-17.04.1 ...
- python爬虫面试总结
1.爬虫有哪些模块? 答: URL管理模块:维护已经爬取的URL集合和未爬取的URL集合,并提供获取新URL链接的接口 HTML下载模块:从URL管理器中获取未爬取的URL链接并下载HTML网页 HT ...
- Nginx惊群处理
惊群:是指在多线程/多进程中,当有一个客户端发生链接请求时,多线程/多进程都被唤醒,然后只仅仅有一个进程/线程处理成功,其他进程/线程还是回到睡眠状态,这种现象就是惊群. 惊群是经常发生现在serve ...
- 主机批量扫描工具fping,hping安装及使用
https://blog.csdn.net/weixin_39762926/article/details/79476196?utm_source=blogxgwz0 https://blog.csd ...
- 邂逅Sass和Compass之Sass篇
对于一个从后台转到前端的web开发者来说,最大的麻烦就是写CSS,了解CSS的人都知道,它可以开发网页样式,但是没法用它编程,感觉耦合性相当的高,如果想要方便以后维护,只能逐句修改甚至重写相当一部分的 ...
- 原生js遍历每一个对象,给每一个对象添加onclick事件
<script type="text/javascript"> window.onload = function () { var imgs = document.im ...
- JQuery动态添加多个tab页标签
jQuery是一个兼容多浏览器的js库,核心理念是write less,do more(写的更少,做的更多),jQuery使用户能更方便地处理HTML documents.events.实现动画效果, ...
- 战火魔兽CJQ圣印问题
本来一直是玩的T的. 一次偶然机会打了次团本,用CJQ(毒蛇),在副本中问CJQ用什么圣印 有人说命令,有人说腐蚀... 对此做先研究 无BUFF木桩测试:5分钟(开sp翅膀,不踩奉献,技能什么好了按 ...
- 《深入理解Android2》读书笔记(五)
接上篇<深入理解Android2>读书笔记(四) startActivity Am void run() throws RemoteException { try { printMessa ...