BZOJ 4028: [HEOI2015]公约数数列 分块
4028: [HEOI2015]公约数数列
题目连接:
http://www.lydsy.com/JudgeOnline/problem.php?id=4028
Description
设计一个数据结构. 给定一个正整数数列 a_0, a_1, ..., a_{n - 1},你需要支持以下两种操作:
- MODIFY id x: 将 a_{id} 修改为 x.
- QUERY x: 求最小的整数 p (0 <= p < n),使得 gcd(a_0, a_1, ..., a_p) * XOR(a_0, a_1, ..., a_p) = x. 其中 XOR(a_0, a_1, ..., a_p) 代表 a_0, a_1, ..., a_p 的异或和,gcd表示最大公约数。
Input
输入数据的第一行包含一个正整数 n.
接下来一行包含 n 个正整数 a_0, a_1, ..., a_{n - 1}.
之后一行包含一个正整数 q,表示询问的个数。
之后 q 行,每行包含一个询问。格式如题目中所述。
Output
对于每个 QUERY 询问,在单独的一行中输出结果。如果不存在这样的 p,输出 no.
Sample Input
10
1353600 5821200 10752000 1670400 3729600 6844320 12544000 117600 59400 640
10
MODIFY 7 20321280
QUERY 162343680
QUERY 1832232960000
MODIFY 0 92160
QUERY 1234567
QUERY 3989856000
QUERY 833018560
MODIFY 3 8600
MODIFY 5 5306112
QUERY 148900352
Sample Output
6
0
no
2
8
8
Hint
对于 100% 的数据,n <= 100000,q <= 10000,a_i <= 10^9 (0 <= i < n),QUERY x 中的 x <= 10^18,MODIFY id x 中的 0 <= id < n,1 <= x <= 10^9.
题意
题解:
这种乱七八糟的修改,一般就是分块了……
根据前缀GCD,肯定GCD在不断的减小的,而且每次减小最少都是除以2的
所以前缀gcd的种类最多logn种
于是我们就分块搞
那hash表把每一块的xor都存下来
如果这一块内的gcd不变的话,我就直接拿这一块的hash表去查询就好了
如果gcd变化了,就直接暴力这一块
复杂度是n*sqrtn*logn(其实我感觉这个复杂度和暴力没啥区别
在bzoj上map会tle,所以我用的set
代码
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e5+7;
int a[maxn];
int l[1000],r[1000];
int block,num,belong[maxn];
int Gcd[maxn],Xor[maxn];
set<int> S[1000];
int gcd(int a,int b)
{
if(b==0)return a;
return gcd(b,a%b);
}
void build(int t)
{
S[t].clear();
Gcd[l[t]]=a[l[t]],Xor[l[t]]=a[l[t]];
S[t].insert(Xor[l[t]]);
for(int i=l[t]+1;i<=r[t];i++)
{
Gcd[i]=gcd(Gcd[i-1],a[i]),Xor[i]=Xor[i-1]^a[i];
S[t].insert(Xor[i]);
}
}
int main()
{
int n;
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
block=(int)sqrt(n+0.5);
num = n/block;
if(n%block)num++;
for(int i=1;i<=num;i++)
l[i]=(i-1)*block+1,r[i]=i*block;
r[num]=n;
for(int i=1;i<=n;i++)
belong[i]=(i-1)/block+1;
for(int i=1;i<=num;i++)
build(i);
int q;scanf("%d",&q);
while(q--)
{
char s[10];
scanf("%s",s);
if(s[0]=='M')
{
int x,y;
scanf("%d%d",&x,&y);x++;
a[x]=y;build(belong[x]);
}
else
{
long long x;scanf("%lld",&x);
int flag = 0,Lgcd=0,Lxor=0;
for(int i=1;i<=num;i++)
{
int T = gcd(Lgcd,Gcd[r[i]]);
if(T!=Lgcd)
{
for(int j=l[i];j<=r[i];j++)
if((long long)(Xor[j]^Lxor)*(long long)(gcd(Lgcd,Gcd[j]))==x)
{
flag = j;
break;
}
if(flag>0)break;
}
else
{
if(x%T==0&&S[i].count((int)(x/T)^Lxor))
{
for(int j=l[i];j<=r[i];j++)
if((long long)(Xor[j]^Lxor)*(long long)(gcd(Lgcd,Gcd[j]))==x)
{
flag = j;
break;
}
if(flag>0)break;
}
}
Lgcd = T,Lxor^=Xor[r[i]];
}
if(flag>0)
printf("%d\n",flag-1);
else
printf("no\n");
}
}
}
BZOJ 4028: [HEOI2015]公约数数列 分块的更多相关文章
- BZOJ 4028: [HEOI2015]公约数数列 【分块 + 前缀GCD】
任意门:https://www.lydsy.com/JudgeOnline/problem.php?id=4028 4028: [HEOI2015]公约数数列 Time Limit: 10 Sec ...
- bzoj 4028 : [HEOI2015]公约数数列
之前看了好几次都没什么思路,今天下定决心把这题切了. 观察到$0-x$的gcd最多变化log次,因为它每次变化一定至少要去掉一个质因子,所以我们可以枚举gcd. 因为数据范围比较小,所以想到了分块. ...
- 【BZOJ4028】[HEOI2015]公约数数列 分块
[BZOJ4028][HEOI2015]公约数数列 Description 设计一个数据结构. 给定一个正整数数列 a_0, a_1, ..., a_{n - 1},你需要支持以下两种操作: 1. M ...
- [BZOJ4028][HEOI2015]公约数数列(分块)
先发掘性质: 1.xor和gcd均满足交换律与结合率. 2.前缀gcd最多只有O(log)个. 但并没有什么数据结构能同时利用这两个性质,结合Q=10000,考虑分块. 对每块记录这几个信息: 1.块 ...
- 【BZOJ4028】[HEOI2015]公约数数列(分块)
[BZOJ4028][HEOI2015]公约数数列(分块) 题面 BZOJ 洛谷 题解 看一道题目就不会做系列 首先\(gcd\)最多只会有\(log\)种取值,所以我们可以暴力枚举出所有可能的\(g ...
- 洛谷 P4108 / loj 2119 [HEOI2015] 公约数数列 题解【分块】
看样子分块题应该做的还不够. 题目描述 设计一个数据结构. 给定一个正整数数列 \(a_0, a_1, \ldots , a_{n-1}\),你需要支持以下两种操作: MODIFY id x: 将 \ ...
- BZOJ4028 HEOI2015公约数数列(分块)
前缀gcd的变化次数是log的,考虑对每一种gcd查询,问题变为查询一段区间是否存在异或前缀和=x/gcd. 无修改的话显然可以可持久化trie,但这玩意实在没法支持修改.于是考虑分块. 对于每一块将 ...
- bzoj4028: [HEOI2015]公约数数列
Description 设计一个数据结构. 给定一个正整数数列 a_0, a_1, ..., a_{n - 1},你需要支持以下两种操作: 1. MODIFY id x: 将 a_{id} 修改为 x ...
- luogu P4108 [HEOI2015]公约数数列——solution
-by luogu 不会啊.... 然后%了一发题解, 关键是 考虑序列{$a_n$}的前缀gcd序列, 它是单调不升的,且最多只会改变$log_2N$次,因为每变一次至少除2 于是,当我们询问x时: ...
随机推荐
- 限制printk打印频率函数printk_ratelimit【转】
转自:http://blog.csdn.net/lkkey80/article/details/45190095 版权声明:博文地址 http://blog.csdn.net/lkkey80?view ...
- jQuery Validate插件 验证实例
官网地址:http://bassistance.de/jquery-plugins/jquery-plugin-validation Validate手册: http://www.cnblogs.co ...
- FAN54015 充電電流 軟硬體設定
Ex1: Vrsense 選 37.4 mV --- 在第二張圖 Rsense 選 50 mΩ --- 在第三張圖 37.4 / 50 = 748 mA Ex2: Vrsense 選 44.2 mV ...
- leetcode 之Reverse Linked List II(15)
这题用需要非常细心,用头插法移动需要考虑先移动哪个,只需三个指针即可. ListNode *reverseList(ListNode *head, int m, int n) { ListNode d ...
- leetcode 之Rotate List(18)
这题我的第一想法是用头插法,但实际上并不好做,因为每次都需要遍历最后一个.更简单的做法是将其连成环,找到相应的位置重新设头结点和尾结点.这过 有很多细节需要注意,比如K有可能是大于链表长度的,如何重新 ...
- memcache和redis的对比
1.memcache a.Memcached 是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载.它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态.数据库驱动网站 ...
- hdu 5023
A Corrupt Mayor's Performance Art Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 100000/100 ...
- Sqrt(x)——二分法,防越界
Implement int sqrt(int x). Compute and return the square root of x. 转自:http://blog.csdn.net/doc_sgl/ ...
- nginx基于tcp负载均衡
官方参考文档:http://nginx.org/en/docs/stream/ngx_stream_core_module.html 只有nginx1.9以上的版本才支持tcp负载均衡 配置必须出现在 ...
- Centos7安装和配置NFS
(1)nfs简介 作用:通过网络的不同的主机之间共享资源,支持多节点挂载并发写入 特点:单台,适合小型网络集群架构,非常稳定:大型公司使用(mfs,glusterfs,fastdfs) nfs优点:部 ...