链接:

https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=944

题意:

有一根长度为L(L<1000)的棍子,还有n(n<50)个切割点的位置(按照从小到大排列)。
你的任务是在这些切割点的位置处把棍子切成n+1部分,使得总切割费用最小(每次切割的费用等于被切割的木棍长度)。

分析:

设d(i,j)为切割小木棍第i点到第j点的最优费用,则d(i,j) = min{d(i,k) + d(k,j) | i<k<j} + a[j]-a[i],
其中最后一项a[j]-a[i]代表第一刀的费用。切完之后,小木棍变成i~k和k~j两部分,状态转移方程由此可得。
把切割点编号为1~n,左边界编号为0,右边界编号为n+1,则答案为d(0,n+1)。

代码:

 #include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; int a[+], d[+][+]; // d[i][j]为切割小木棍第i点到第j点的最优费用 int dp(int L, int R){
if(d[L][R] || L + == R) return d[L][R];
int v = ;
for(int M = L + ; M < R; M++) v = min(v, dp(L, M) + dp(M, R));
return d[L][R] = v + a[R] - a[L];
} int main(){
int L, n;
while(scanf("%d", &L) && L){
scanf("%d", &n);
for(int i = ; i <= n; i++) scanf("%d", &a[i]);
a[n+] = L;
memset(d, , sizeof(d));
printf("The minimum cutting is %d.\n", dp(, n + ));
}
return ;
}

UVa 10003 - Cutting Sticks(区间DP)的更多相关文章

  1. UVA 10003 Cutting Sticks 区间DP+记忆化搜索

    UVA 10003 Cutting Sticks+区间DP 纵有疾风起 题目大意 有一个长为L的木棍,木棍中间有n个切点.每次切割的费用为当前木棍的长度.求切割木棍的最小费用 输入输出 第一行是木棍的 ...

  2. uva 10003 Cutting Sticks(区间DP)

    题目连接:10003 - Cutting Sticks 题目大意:给出一个长l的木棍, 再给出n个要求切割的点,每次切割的代价是当前木棍的长度, 现在要求输出最小代价. 解题思路:区间DP, 每次查找 ...

  3. UVA 10003 Cutting Sticks(区间dp)

    Description    Cutting Sticks  You have to cut a wood stick into pieces. The most affordable company ...

  4. 10003 Cutting Sticks(区间dp)

      Cutting Sticks  You have to cut a wood stick into pieces. The most affordable company, The Analog ...

  5. uva 10003 Cutting Sticks 【区间dp】

    题目:uva 10003 Cutting Sticks 题意:给出一根长度 l 的木棍,要截断从某些点,然后截断的花费是当前木棍的长度,求总的最小花费? 分析:典型的区间dp,事实上和石子归并是一样的 ...

  6. UVA 10003 Cutting Sticks

    题意:在给出的n个结点处切断木棍,并且在切断木棍时木棍有多长就花费多长的代价,将所有结点切断,并且使代价最小. 思路:设DP[i][j]为,从i,j点切开的木材,完成切割需要的cost,显然对于所有D ...

  7. uva 10003 Cutting Sticks (区间dp)

    本文出自   http://blog.csdn.net/shuangde800 题目链接:  打开 题目大意 一根长为l的木棍,上面有n个"切点",每个点的位置为c[i] 要按照一 ...

  8. UVA 10003 Cutting Sticks 切木棍 dp

    题意:把一根木棍按给定的n个点切下去,每次切的花费为切的那段木棍的长度,求最小花费. 这题出在dp入门这边,但是我看完题后有强烈的既是感,这不是以前做过的石子合并的题目变形吗? 题目其实就是把n+1根 ...

  9. UVA - 10003 Cutting Sticks(切木棍)(dp)

    题意:有一根长度为L(L<1000)的棍子,还有n(n < 50)个切割点的位置(按照从小到大排列).你的任务是在这些切割点的位置处把棍子切成n+1部分,使得总切割费用最小.每次切割的费用 ...

随机推荐

  1. Grunt:任务自动管理工具(收藏+转载)

    原文:http://javascript.ruanyifeng.com/tool/grunt.html 安装 命令脚本文件Gruntfile.js Gruntfile.js实例:grunt-contr ...

  2. [转]angularjs之ui-grid 使用详解

    本文转自:http://blog.csdn.net/qhkabuqiluo/article/details/52237710 最近一段时间在使用angularjs 然后就找到ui-grid 这个比较不 ...

  3. java 线程池(1)

    问题 : 线程池中的 coreSize 和 maxSize 的作用分别是什么? 未执行的线程池存在在哪种数据类型,为什么使用这种类型的数据结构 ThreadPoolExecutor概述 ThreadP ...

  4. 嵌套Golang对象的初始化

      比如有这样一个对象: type ProductConfig struct {     Site map[string]string } 对应的初始化可以如下写: var pc ProductCon ...

  5. 将ojdbc 添加到maven

    去oracle官网下载jar包 然后在jar包所在目录输入maven命令 mvn install:install-file -DgroupId=com.oracle -DartifactId=ojdb ...

  6. 洛谷11月月赛题解(A-C)

    心路历程 辣鸡T3卡我1.5h题意,要不是最后nlh跟我解释了一下大样例估计这次是真凉透了.. A P4994 终于结束的起点 打出暴力来发现跑的过最大数据?? 保险起见还是去oeis了一波,然后被告 ...

  7. Python-并发编程(进程)

    接下来我们用几天的时间说一说python中并发编程的知识 一.背景知识 顾名思义,进程即正在执行的一个过程.进程是对正在运行程序的一个抽象. 进程的概念起源于操作系统,是操作系统最核心的概念,也是操作 ...

  8. Sencha Architect打开闪退问题修复

    删除以下位置的cache文件夹 C:\Users\Administrator\AppData\Local\Sencha\Sencha Architect 3.2\Cache bug解决参考 https ...

  9. base64编码 的 图片 另存为下载

    功能描述: 有一段base64字符串的图片,将其保存下载为png图片! 可以:  直接 a 链接下载:  <a id="tttt" download="1.jpg& ...

  10. Git 学习记录

    安装 1.  https://git-for-windows.github.io下载(网速慢的同学请移步国内镜像),然后按默认选项安装即可.安装完成后,在开始菜单里找到“Git”->“Git B ...