bzoj 2588 Count on a tree 解题报告
Count on a tree
题目描述
给定一棵\(N\)个节点的树,每个点有一个权值,对于\(M\)个询问\((u,v,k)\),你需要回答\(u\) \(xor\) \(lastans\)和\(v\)这两个节点间第\(K\)小的点权。其中\(lastans\)是上一个询问的答案,初始为\(0\),即第一个询问的u是明文。
输入输出格式
输入格式:
第一行两个整数\(N,M\)。
第二行有\(N\)个整数,其中第\(i\)个整数表示点\(i\)的权值。
后面\(N-1\)行每行两个整数\((x,y)\),表示点\(x\)到点\(y\)有一条边。
最后\(M\)行每行两个整数\((u,v,k)\),表示一组询问。
输出格式:
\(M\)行,表示每个询问的答案。
一看是无修改的第\(k\)值查询,我们可以用可持久化降维。
就是把序列上的第\(k\)值扩展到了树上。
我们考虑一条树上路径可以被怎么表示
这样类比,假设树上每个点有点权,则树上路径点权之和可以被树的前缀和数组这样表示
\(len(u,v)=dis[u]+dis[v]-dis[lca(u,v)]-dis[father(lca[u,v])]\)
然而前缀和其实就是一维的可持久化,我们把\(dis\)数组类比成主席树加加减减就好了
Code:
#include <cstdio>
#include <algorithm>
#define ls ch[now][0]
#define rs ch[now][1]
const int N=100010;
int Next[N<<1],to[N<<1],head[N],cnt;
void add(int u,int v)
{
Next[++cnt]=head[u];to[cnt]=v;head[u]=cnt;
}
int sum[N*25],ch[N*25][2],tot,n,m,n_;
void updata(int now)
{
sum[now]=sum[ls]+sum[rs];
}
int rebuild(int las,int l,int r,int pos)
{
int now=++tot;
if(l==r)
{
sum[now]=sum[las]+1;
return now;
}
int mid=l+r>>1;
if(pos<=mid)
{
ls=rebuild(ch[las][0],l,mid,pos);
rs=ch[las][1];
}
else
{
ls=ch[las][0];
rs=rebuild(ch[las][1],mid+1,r,pos);
}
updata(now);
return now;
}
int ha[N],loc[N],root[N];
int query(int u,int v,int lca,int lcaf,int l,int r,int k)
{
if(l==r) return ha[l];
int s=sum[ch[u][0]]+sum[ch[v][0]]-sum[ch[lca][0]]-sum[ch[lcaf][0]];
int mid=l+r>>1;
if(k<=s) return query(ch[u][0],ch[v][0],ch[lca][0],ch[lcaf][0],l,mid,k);
else return query(ch[u][1],ch[v][1],ch[lca][1],ch[lcaf][1],mid+1,r,k-s);
}
int top[N],dfn[N],f[N],dep[N],ws[N],siz[N],time;
void dfs1(int now)
{
root[now]=rebuild(root[f[now]],1,n,loc[now]);
siz[now]++;
for(int i=head[now];i;i=Next[i])
{
int v=to[i];
if(v!=f[now])
{
f[v]=now;
dep[v]=dep[now]+1;
dfs1(v);
siz[now]+=siz[v];
if(siz[ws[now]]<siz[v])
ws[now]=v;
}
}
}
void dfs2(int now,int anc)
{
dfn[now]=++time;
top[now]=anc;
if(ws[now]) dfs2(ws[now],anc);
for(int i=head[now];i;i=Next[i])
if(!dfn[to[i]])
dfs2(to[i],to[i]);
}
int LCA(int x,int y)
{
while(top[x]!=top[y])
{
if(dep[top[x]]>dep[top[y]])
x=f[top[x]];
else
y=f[top[y]];
}
return dep[x]<dep[y]?x:y;
}
std::pair <int,int > node[N];
void init()
{
scanf("%d%d",&n_,&m);
for(int d,i=1;i<=n_;i++)
{
scanf("%d",&d);
node[i]=std::make_pair(d,i);
}
std::sort(node+1,node+1+n_);
for(int i=1;i<=n_;i++)
{
if(node[i].first!=node[i-1].first) n++;
ha[n]=node[i].first;
loc[node[i].second]=n;
}
for(int u,v,i=1;i<n_;i++)
{
scanf("%d%d",&u,&v);
add(u,v),add(v,u);
}
dfs1(1);
dfs2(1,1);
}
void work()
{
for(int u,v,lca,k,lastans=0,i=1;i<=m;i++)
{
scanf("%d%d%d",&u,&v,&k);
u^=lastans;
lca=LCA(u,v);
printf("%d\n",lastans=query(root[u],root[v],root[lca],root[f[lca]],1,n,k));
}
}
int main()
{
init();
work();
return 0;
}
2018.7.31
bzoj 2588 Count on a tree 解题报告的更多相关文章
- BZOJ 2588 Count on a tree (COT) 是持久的段树
标题效果:两棵树之间的首次查询k大点的权利. 思维:树木覆盖树,事实上,它是正常的树木覆盖了持久段树. 由于使用权值段树可以寻求区间k大,然后应用到持久段树思想,间隔可以做减法.详见代码. CODE: ...
- BZOJ.2588.Count on a tree(主席树 静态树上第k小)
题目链接 /* 序列上的主席树 某点是利用前一个点的根建树 同理 树上的主席树 某个节点可以利用其父节点(is unique)的根建树 排名可以利用树上前缀和求得: 对于(u,v),w=LCA(u,v ...
- bzoj 2588 Count on a tree
Description 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问的答案,初始 ...
- 【LeetCode】863. All Nodes Distance K in Binary Tree 解题报告(Python)
[LeetCode]863. All Nodes Distance K in Binary Tree 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http ...
- 【LeetCode】297. Serialize and Deserialize Binary Tree 解题报告(Python)
[LeetCode]297. Serialize and Deserialize Binary Tree 解题报告(Python) 标签: LeetCode 题目地址:https://leetcode ...
- 【LeetCode】331. Verify Preorder Serialization of a Binary Tree 解题报告(Python)
[LeetCode]331. Verify Preorder Serialization of a Binary Tree 解题报告(Python) 标签: LeetCode 题目地址:https:/ ...
- 【LeetCode】109. Convert Sorted List to Binary Search Tree 解题报告(Python)
[LeetCode]109. Convert Sorted List to Binary Search Tree 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id ...
- 【LeetCode】236. Lowest Common Ancestor of a Binary Tree 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 日期 题目地址:https://leetcode.c ...
- 【LeetCode】99. Recover Binary Search Tree 解题报告(Python)
[LeetCode]99. Recover Binary Search Tree 解题报告(Python) 标签(空格分隔): LeetCode 题目地址:https://leetcode.com/p ...
随机推荐
- Appium(Python)API
1.创建新的会话desired_caps = desired_caps = { 'platformName': 'Android', 'platformVersion': '7.0', 'dev ...
- 游戏AI之群组行为
群组行为指的是多个对象组队同时进行的情况.每个boid需满足分离,队列,凝聚三个基本的规则. 分离:群组中的每个个体都与相邻的个体保持一定的距离. 队列:群组以相同的速度,向相同的方向移动. 凝聚:与 ...
- lintcode433 岛屿的个数
岛屿的个数 给一个01矩阵,求不同的岛屿的个数. 0代表海,1代表岛,如果两个1相邻,那么这两个1属于同一个岛.我们只考虑上下左右为相邻. 您在真实的面试中是否遇到过这个题? Yes 样例 在矩阵: ...
- 如何处理 jQuery $(window).resize() 中的方法被多次执行的小问题
引言: 估计很多同志们在编写浏览器resize()的方法时,都会遇到这样的情况: 当拖动浏览器的边角时,页面中的一些效果随浏览器大小的改变而触发,这一过程开始到结束,resize() 中的方法被执行了 ...
- python同时遍历两个list
两个list, 有对应关系,希望同时完成遍历 用迭代器迭代的方法也不是不可以,python提供了更直观的方法: 可以使用zip把两个list打包 , 类似: list1 = [1,2,3,4] lis ...
- 动态内存&对象
一.对象的生存期 对于 static 对象和自动对象,它们都有着严格定义的生存期. 全局对象:在程序启动时分配,在程序结束时销毁. 局部自动对象:在对象定义语句时分配,在离开块时销毁 局部 stati ...
- k邻近算法理解及代码实现
github:代码实现 本文算法均使用python3实现 1 KNN KNN(k-nearest neighbor, k近邻法),故名思议,是根据最近的 $ k $ 个邻居来判断未知点属于哪个类别 ...
- LintCode-73.前序遍历和中序遍历树构造二叉树
前序遍历和中序遍历树构造二叉树 根据前序遍历和中序遍历树构造二叉树. 注意事项 你可以假设树中不存在相同数值的节点 样例 给出中序遍历:[1,2,3]和前序遍历:[2,1,3]. 返回如下的树: ...
- Python实现FTP服务功能
本文从以下三个方面, 阐述Python如何搭建FTP服务器 一. Python搭建FTP服务器 二. FTP函数释义 三. 查看目录结构 四. 上传下载程序 一. Python搭建FTP服务器 1. ...
- PHP查询网站
1.w3school http://www.w3school.com.cn/php/ 2.PHP官网 http://php.net/manual/en/funcref.php 3.国内的类似w3csh ...