HDU 4549 矩阵快速幂+快速幂+欧拉函数
M斐波那契数列
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 3087 Accepted Submission(s): 953
F[0] = a
F[1] = b
F[n] = F[n-1] * F[n-2] ( n > 1 )
现在给出a, b, n,你能求出F[n]的值吗?
每组数据占一行,包含3个整数a, b, n( 0 <= a, b, n <= 10^9 )
6 10 2
60
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <stack>
#include <queue>
#include <cmath>
#include <map>
#define ll __int64
#define mod 1000000007
#define dazhi 2147483647
using namespace std;
ll a,b,n;
struct matrix
{
ll m[][];
} ans,exm;
ll phi(ll nn)
{
ll i,rea=nn;
for(i=;i*i<=nn;i++)
{
if(nn%i==)
{
rea=rea-rea/i;
while(nn%i==)
nn/=i;
}
}
if(nn>)
rea=rea-rea/nn;
return rea;
}
ll zha=phi(mod);
struct matrix matrix_mulit(struct matrix aa, struct matrix bb)
{
struct matrix there;
for(int i=; i<; i++)
{
for(int j=; j<; j++)
{
there.m[i][j]=;
for(int k=; k<; k++)
there.m[i][j]=(there.m[i][j]+aa.m[i][k]*bb.m[k][j]%zha)%zha;
}
}
return there;
};
ll matrix_quick(ll gg)
{
exm.m[][]=exm.m[][]=exm.m[][]=;
exm.m[][]=;
ans.m[][]=ans.m[][]=;
ans.m[][]=ans.m[][]=;
while(gg)
{
if(gg&)
{
ans=matrix_mulit(ans,exm);
}
exm=matrix_mulit(exm,exm);
gg>>=;
}
return ans.m[][];
}
ll quickmod(ll aa,ll bb)
{
ll re=;
while(bb)
{
if(bb&)
re=(re*aa)%mod;
aa=(aa*aa)%mod;
bb>>=;
}
return re;
} int main()
{
while(scanf("%I64d %I64d %I64d",&a,&b,&n)!=EOF)
{
if(n==)
printf("%I64d\n",a);
else
{
if(n==)
printf("%I64d\n",b);
else
{
printf("%I64d\n",quickmod(a,matrix_quick(n-)+zha)*quickmod(b,matrix_quick(n-)+zha)%mod);
}
}
}
return ;
}
HDU 4549 矩阵快速幂+快速幂+欧拉函数的更多相关文章
- hdu 3307 Description has only two Sentences (欧拉函数+快速幂)
Description has only two SentencesTime Limit: 3000/1000 MS (Java/Others) Memory Limit: 65536/32768 K ...
- poj3696 快速幂的优化+欧拉函数+gcd的优化+互质
这题满满的黑科技orz 题意:给出L,要求求出最小的全部由8组成的数(eg: 8,88,888,8888,88888,.......),且这个数是L的倍数 sol:全部由8组成的数可以这样表示:((1 ...
- 快速切题 sgu102.Coprimes 欧拉函数 模板程度 难度:0
102. Coprimes time limit per test: 0.25 sec. memory limit per test: 4096 KB For given integer N (1&l ...
- HDU 1286:找新朋友(欧拉函数)
http://acm.hdu.edu.cn/showproblem.php?pid=1286 题意:中文. 思路:求欧拉函数. #include <cstdio> #include < ...
- HDU 6088 Rikka with Rock-paper-scissors(NTT+欧拉函数)
题意 \(n\) 局石头剪刀布,设每局的贡献为赢的次数与输的次数之 \(\gcd\) ,求期望贡献乘以 \(3^{2n}\) ,定义若 \(xy=0\) 则,\(\gcd(x,y)=x+y\) 思路 ...
- (hdu step 7.2.2)GCD Again(欧拉函数的简单应用——求[1,n)中与n不互质的元素的个数)
题目: GCD Again Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total ...
- hdu 1286 找新朋友 (容斥原理 || 欧拉函数)
Problem - 1286 用容斥原理做的代码: #include <cstdio> #include <iostream> #include <algorithm&g ...
- 欧拉函数 & 【POJ】2478 Farey Sequence & 【HDU】2824 The Euler function
http://poj.org/problem?id=2478 http://acm.hdu.edu.cn/showproblem.php?pid=2824 欧拉函数模板裸题,有两种方法求出所有的欧拉函 ...
- 找新朋友---hdu1286(欧拉函数)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1286 欧拉函数:对正整数n,欧拉函数是求少于n的数中与n互质的数的数目: 素数(质数)指在一个大于1的 ...
- POJ_2480 Longge's problem【积性函数+欧拉函数的理解与应用】
题目: Longge is good at mathematics and he likes to think about hard mathematical problems which will ...
随机推荐
- java后台接受web前台传递的数组参数
前台发送:&warning_type[]=1,2 &warning_type=1,2 后台接收:(@RequestParam(value = "param[]") ...
- CsvHelper文档-2读
CsvHelper文档-2读 这个库默认不需要做任何设置就可以很容易的使用它.如果你的类属性名称直接匹配csv的标题名称,那么可以按照下面的实例来用: (以下所有的代码都需要引用using csvhe ...
- 解决mac OS 10.9 下python 在terminal下崩溃的问题
Python 2.7.6 release candidate 1 was released on October 26, 2013. This is a 2.7 series bugfix relea ...
- [C++] in-class initializer
C++11 introduced serveral contructor-related enhancements including: Class member initializers Deleg ...
- canvas学习(四):高级属性
一:阴影 示例:绘制一个带有阴影的正方形 var canvas = document.getElementById("myCanvas") var ctx = canvas.get ...
- kmeans算法理解及代码实现
github:kmeans代码实现1.kmeans代码实现2(包含二分k-means) 本文算法均使用python3实现 1 聚类算法 对于"监督学习"(supervised ...
- 在mysql启用远程连接
1.在ubuntu下面安装mysql. apt-get install mysql-server mysql-client -y 2.修改/etc/mysql/my.cnf文件. #bind-addr ...
- alpha阶段个人总结(201521123034陈凯欣)
一.个人总结 第 0 部分:基本数据结构和算法问题 大二的时候上过数据结构课,感觉自己没有学的太深入,就如之前结对编程时候四则运算有用到的二叉树来解决问题,对于二叉树就有个模糊的概念,实际动手操作起来 ...
- python爬虫从入门到放弃(五)之 正则的基本使用(转)
什么是正则表达式 正则表达式是对字符串操作的一种逻辑公式,就是 事先定义好的一些特定字符.及这些特定字符的组合,组成一个“规则字符”,这个“规则字符” 来表达对字符的一种过滤逻辑. 正则并不是pyth ...
- phpcms免登录cookies设置方案
PHPCMS的SESSION时间长一些的解决办法修改两个文件: phpsso_server/caches/configs/system.php里的 'session_ttl' => 999999 ...