欧拉图 欧拉回路 欧拉通路 Euler
欧拉图
本文链接:http://www.cnblogs.com/Ash-ly/p/5397702.html
定义:
欧拉回路:图G的一个回路,如果恰通过图G的每一条边,则该回路称为欧拉回路,具有欧拉回路的图称为欧拉图。欧拉图就是从图上的一点出发,经过所有边且只能经过一次,最终回到起点的路径。
欧拉通路:即可以不回到起点,但是必须经过每一条边,且只能一次。也叫"一笔画"问题。
性质:
欧拉回路:一个欧拉回路,删掉一个点,仍然是一个欧拉回路。从一个欧拉回路拖走一个小欧拉回路,结果也是一个欧拉回路。
判定(充要):
欧拉回路:1: 图G是连通的,不能有孤立点存在。
2: 对于无向图来说度数为奇数的点个数为0;对于有向图来说每个点的入度必须等于出度。
欧拉通路:1: 图G是连通的,无孤立点存在。
2: 对于无向图来说,度数为奇数的的点可以有2个或者0个,并且这两个奇点其中一个为起点另外一个为终点。对于有向图来说,可以存在两个点,其入度不等于出度,其中一个出度比入度大1,为路径的起点;另外一个入度比出度大1,为路径的终点。
算法(求欧拉回路):
Fleury算法:
设图G是一个无向欧拉图,则按照下面算法求欧拉回路:
1:任取G中一个顶点v0,令P0 = v0.
2:假设沿Pi = v0e1v1e2v2……eivi 走到了顶点 vi,按照下面方法从E(i) = E(G) - {e1, e2, e3,…,ei} 中选e(i + 1),选择后删除e(i +1)这条边.
a):e(i+1)余vi关联
b):除非无别的边可选,否则e(i+1)不应是Gi = G – {e1,e2,…,ei} 中的桥.假若迫不得已选的是桥,除删除这条边之外,还应该再把孤立点从Gi中移除(选择桥边必然会形成孤立的点).
3:当步骤 2 无法继续执行时停止算法.
当算法停止时,所得到的简单回路 Pm = = v0e1v1e2v2e3v3……emvm (vm = v0) 为图G的一条欧拉回路.
下面用图来描述:

随便选择一个起点 v1。当前处在 v1 点,有两种走法 v1 – v9,v1 – v10,这俩条边都不是桥边,那么随便选择一个,<v1, v10>这条边吧。那么图就会成为这样.Eu = (走过的边集){<v1, v10>}

当前到了 V10 点,有<v10,v4>,<v10,v3>,<v10, v8>,先看<v10,v8>这条边吧,如果选择了这条边那么图就会成为这样:

很显然形成了两个图,上下两个图不连通,即<v10, v8>这条边就是所谓的桥边,算法中说除非别无他选,否则不应该选择桥边,那么这条边就不能选择。回到上面,由于<v10,v4>,<v10,v3>都不是桥边,所以随便选择<v10,v4>吧. Eu={<v1, v10>,<v10,v4>}

到了 v4 这个点,<v4, v2>这条边是桥边,但是别无选择,只好选择这条边.选择完这条边这时不仅要从原图中删除这条边,由于点4成为了孤点,所以这个点也该从原图删除。Eu={<v1,v10>,<v10,v4>,<v4,v2>}.

同理到达 v2 只好选择<v2,v3>,删除孤点 v2和边. Eu{<v1,v10>,<v10,v4>,<v4,v2><v2,v3>}.

别无他选,<v3,v10>。Eu{<v1,v10>,<v10,v4>,<v4,v2><v2,v3><v3,v10>}.

同样,选择<v10, v8>,Eu{<v1,v10>,<v10,v4>,<v4,v2><v2,v3><v3,v10>,<v10,v8>}.

此时到了 v8 同第一次到达v10时的情况,不能选择<v8,v9>这条桥边,选择<v8,v6>,Eu{<v1,v10>,<v10,v4>,<v4,v2><v2,v3><v3,v10>,<v10,v8>,<v8,v6>}.

到达v6,选择<v6,v7>,删点删边,Eu{<v1,v10>,<v10,v4>,<v4,v2><v2,v3>,<v3,v10>,<v10,v8>,<v8,v6>,<v6,v7>}.以下就不给图了(逃;
然后接下来的选择都是别无他选,依次选择<v7,v8><v8,v9><v9,v1>,最后得到的欧拉边集Eu{<v1,v10>,<v10,v4>,<v4,v2><v2,v3>,<v3,v10>,<v10,v8>,<v8,v6>,<v6,v7>,<v7,v8><v8,v9><v9,v1>},于是我们就得到了一条欧拉回路.
代码:
个人感觉时间复杂度不如基本法,主要是判断桥边的时间复杂度有点高,达到O(1)才和基本法一样,所以就放弃写了。
基本(套圈)法
首先从一个节点(v0)出发,随便往下走(走过的边需要标记一下,下次就别走了),当走到不能再走的时候,所停止的点必然也是起点(因为所有的点的度数都是偶数,能进去肯定还会出来,再者中间有可能再次经过起点,但是如果起点还能继续走,那么就要继续往下搜索,直到再次回来时不能往下搜索为止),然后停止时,走过的路径形成了一个圈,但因为是随便走的,所以可能有些边还没走就回来了,那些剩下的边肯定也会形成一个或者多个环,然后可以从刚才终止的节点往前回溯,找到第一个可以向其他方向搜索的节点(vi),然后再以这个点继续往下搜索,同理还会继续回到该点(vi),于是这个环加上上次那个环就构成了一个更大的环,即可以想象成形成了一条从 v0 到 vi的路径,再由 vi 走了一个环回到 vi,然后到达v0 的一条更长的路径,如果当前的路径还不是最长的,那么继续按照上面的方法扩展。只需要在回溯时记录下每次回溯的边,最后形成的边的序列就是一条欧拉回路。如果要记录点的顺序的话,那么每访问一个点,就把这个点压入栈中,当某个点不能继续搜索时,即在标记不能走的边是,这个点成为了某种意义上的孤点,然后把这个点输出最后得到的就是一条欧拉回路路径的点的轨迹。
总之,求欧拉回路的方法是,使用深度优先搜索,如果某条边被搜索到,则标记这条边为已选择,并且即使回溯也不能将当前边的状态改回未选择,每次回溯时,记录回溯路径。深度优先搜索结束后,记录的路径就是欧拉回路。
下面用图描述一遍:

假设我们选择从v1开始走,由于随便走,所以可能出现以下走法
第一步:v1 -- v9
第二步:v9 -- v8
第三步:v8 -- v10
第四步:v10 -- v1
此时由于走过的边不能再走,那么从 v1 就无法继续向下探索,所以往前回溯,记录边集Eu{<v1, v10>},此时回溯到 v10 ,发现可以继续走,那么
第五步: v10 -- v3
第六步: v3 -- v2
第七步: v2 -- v4
第八步: v4 – v10
发现已经无路可走,那么继续回溯,记录回溯路径得到Eu{<v1,v10>, <v10, v4>, <v4, v2>, <v2, v3>, <v3, v10>, <v10, v8>},此时回溯到了 v8.发现可以向其他方向搜索, 那么
第九步:v8 -- v6
第十步:v6 --v7
第十一步:v7-- v8
又无路可走,继续回溯Eu{<v1,v10>, <v10, v4>, <v4, v2>, <v2, v3>, <v3, v10>, <v10, v8>, <v8, v7>, <v7, v6>,<v6,v8>,<v8,v9>,<v9,v1>},到这里整个DFS就结束了,我们得到的边集Eu就是一条欧拉回路。
具体实现与分析:
使用链式前向星和DFS实现寻找欧拉回路的算法,用链式前向星存无向边时每条边要存储两次。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <stack>
#include <queue>
using namespace std; const int MAXV = + ;
const int MAXE = * + ;
int head[MAXV];
int V, E; typedef struct EdgeNode
{
int to;
int w;
int next;
}edgeNode;
edgeNode Edges[MAXE]; bool visit[ * MAXE];
stack<int> stv;
queue<int> quv;//点集
queue<int> que;//边集 void EulerDFS(int now)
{
stv.push(now);//每访问一个点,就把该点压入栈
for(int k = head[now]; k != -; k = Edges[k].next)
{
if(!visit[k])
{
visit[k] = true; //有向图每条边保存了两次,也要标记两次
if(k & )
visit[k + ] = true;
else
visit[k - ] = true;
EulerDFS(Edges[k].to);
que.push(k);//回溯时记录边
}
}
quv.push(stv.top());//记录点
stv.pop();
} int main()
{
//freopen("in.txt", "r", stdin);
scanf("%d%d", &V, &E);
memset(head, -, sizeof(head));
for(int i = ; i <= E; i++)
{
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
Edges[ * i - ].to = v; //双向储存边
Edges[ * i - ].w = w;
Edges[ * i - ].next = head[u];
head[u] = * i - ;
Edges[ * i].to = u;
Edges[ * i].w = w;
Edges[ * i].next = head[v];
head[v] = * i;
}
memset(visit, false, sizeof(visit));
EulerDFS();
return ;
}
欧拉图 欧拉回路 欧拉通路 Euler的更多相关文章
- 欧拉图 欧拉回路 欧拉通路 Euler的认识 (转)
转:https://www.cnblogs.com/Ash-ly/p/5397702.html 定义: 欧拉回路:图G的一个回路,如果恰通过图G的每一条边,则该回路称为欧拉回路,具有欧拉回路的图称为欧 ...
- The Best Path HDU - 5883 欧拉通路
图(无向图或有向图)中恰好通过所有边一次且经过所有顶点的的通路成为欧拉通路,图中恰好通过所有边一次且经过所有顶点的回路称为欧拉回路,具有欧拉回路的图称为欧拉图,具有欧拉通路而无欧拉回路的图称为半欧拉图 ...
- CodeForces - 508D Tanya and Password(欧拉通路)
Description While dad was at work, a little girl Tanya decided to play with dad characters. She has ...
- POJ--1300--Door Man【推断无向图欧拉通路】
链接:http://poj.org/problem?id=1300 题意:有n个房间.每一个房间有若干个门和别的房间相连.管家从m房间開始走.要回到自己的住处(0),问是否有一条路能够走遍全部的门而且 ...
- nyoj 42 一笔画 欧拉通路
http://acm.nyist.net/JudgeOnline/problem.php?pid=42 一笔画问题 时间限制:3000 ms | 内存限制:65535 KB 难度:4 描述 zyc ...
- hdu5883【欧拉通路】
题意:n个点m条无向边的图,找一个欧拉通路/回路,下标是p1,p2,p3-pt,然后使得ap1XORap2XOR-XORapt这个值最大. 思路: 首先要判断一下这个图是不是联通的,用并查集就好了,然 ...
- hdu3472 混合图判断欧拉通路
对于欧拉回路,先判断出度入度的差是否为偶数,然后最大流一次. 此题是判断有无欧拉通路,前提要判断图是否连通,然后欧拉通路的条件:要么出入度差没有奇数,或者只有2个点. 所以先统计差为奇数的个数,如果不 ...
- PAT (Advanced Level) 1124~1127:1124模拟 1125优先队列 1126欧拉通路 1127中序后序求Z字形层序遍历
1124 Raffle for Weibo Followers(20 分) 题意:微博抽奖,有M个人,标号为1~M.从第S个人开始,每N个人可以获奖,但是已获奖的人不能重复获奖,需要跳过该人把机会留给 ...
- FZU 2112 并查集、欧拉通路
原题:http://acm.fzu.edu.cn/problem.php?pid=2112 首先是,票上没有提到的点是不需要去的. 然后我们先考虑这个图有几个连通分量,我们可以用一个并查集来维护,假设 ...
随机推荐
- [LeetCode] 12. Integer to Roman ☆☆
Given an integer, convert it to a roman numeral. Input is guaranteed to be within the range from 1 t ...
- B树和TreeSet与TreeMap
1. 此前二叉搜索树相关的内容我们均假设可以把整个数据结构存储在计算机的内存中,但是如果数据量过大时,必须把数据结构放在磁盘上,导致大O模型不在适用.目前计算机处理器每秒至少可以执行5亿条指令,磁盘访 ...
- 【C++ STL】Queue
1.定义 class queue<>实作为一个queue(也成为FIFO,先进先出).可以使用push()将任意数量的元素置入queue中,也可以使用pop()将元素以其插入顺序从容器中移 ...
- 在Linux系统里运行shutdown.sh命令关闭Tomcat时出现错误提示
服务器:linnux 5.5 64位,已安装好 jdk: Tomcat版本:apache-tomcat-7.0.53 操作软件:Xshell 4(Free for Home / School) 刚开始 ...
- 【NOIP】提高组2015 斗地主
[题意]按照斗地主出牌规则,给定手牌求出完的最少步数. [算法]模拟+搜索 [题解] 可以发现除了顺子,其它的出牌规则都和点数无关,只与同点数的牌数有关. 所以可以先暴力枚举要出哪些顺子,然后每一个出 ...
- bzoj 2809 左偏树\平衡树启发式合并
首先我们对于一颗树,要选取最多的节点使得代价和不超过m,那么我们可以对于每一个节点维护一个平衡树,平衡树维护代价以及代价的和,那么我们可以在logn的时间内求出这个子树最多选取的节点数,然后对于一个节 ...
- 生成应用的快捷方式action,权限
action:"com.android.launcher.action.INSTALL_SHORTCUT" 权限:com.android.launcher.permission.I ...
- Perl6 Bailador框架(3):路径匹配
use v6; use Bailador; =begin pod 注意的是, 当/:one设置时 虽然你有/admin或/about, 但这个/:one不会跟现有的匹配 只跟没有的匹配: 也就是说, ...
- 土司论坛nc反弹神器使用方法
说明: PS:我本机是linux,因为没有服务器所以使用win7来演示.倘若你是windows可以在本机生成dll以后再放到服务器上面去执行dll即可反弹shell物理机ip:192.168.1.12 ...
- 64_j2
jetty-websocket-server-9.4.3-3.v20170317.fc26.n..> 14-Apr-2017 12:03 62034 jetty-websocket-servle ...