http://www.lydsy.com/JudgeOnline/problem.php?id=1656

神bfs!

我们知道,我们要绕这个联通的树林一圈。

那么,我们想,怎么才能让我们的bfs绕一个圈做bfs呢

我们可以这样:从联通的任意边界点引一条交边界的射线

为什么呢?因为这样当我们的bfs到这条射线时,我们可以不向射线拓展!

可是我们考虑的是绕一个圈,那么我们要考虑从另一个放向到达射线的情况(即饶了一圈后到射线我们要考虑拓展)

这样我们就能保证绕了联通块一圈,然后是最短距离

具体细节看代码

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << #x << " = " << x << endl
#define printarr2(a, b, c) for1(i, 1, b) { for1(j, 1, c) cout << a[i][j] << '\t'; cout << endl; }
#define printarr1(a, b) for1(i, 1, b) cout << a[i] << '\t'; cout << endl
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=60, Q=N*N*10, dx[]={-1, 1, 0, 0, -1, 1, -1, 1}, dy[]={0, 0, -1, 1, -1, -1, 1, 1};
int a[N][N], line[N][N], f[2][N][N], n, m, front, tail, flag, x, y, X, Y;
struct dat { int x, y, f; }q[Q]; int main() {
read(n); read(m);
for1(i, 1, n) for1(j, 1, m) {
char ch=getchar(); while(ch!='.'&&ch!='X'&&ch!='*') ch=getchar();
if(ch=='X') a[i][j]=1, x=i, y=j;
else if(ch=='*') X=i, Y=j;
}
for1(i, 1, n) if(i+x<=n) line[i+x][y]=1; else break;
q[tail].x=X, q[tail].y=Y, q[tail++].f=0;
while(front!=tail) {
dat &t=q[front++]; if(front==Q) front=0;
x=t.x, y=t.y, flag=t.f;
rep(i, 8) {
int fx=dx[i]+x, fy=dy[i]+y;
if(fx<0 || fy<0 || fx>n || fy>m || a[fx][fy]) continue;
if((line[x][y] || line[fx][fy]) && fy<=y) continue; //当前在射线上或下一个点是射线上时(即从右向左),不能向左拓展
if(line[fx][fy] && !f[1][fx][fy]) { //当这是从射线左边向射线过来时,更新上的点
f[1][fx][fy]=f[flag][x][y]+1;
q[tail].x=fx, q[tail].y=fy, q[tail++].f=1; if(tail==Q) tail=0;
}
else if(!f[flag][fx][fy]) { //继承饶了一圈后的距离向四周拓展
f[flag][fx][fy]=f[flag][x][y]+1;
q[tail].x=fx, q[tail].y=fy, q[tail++].f=flag; if(tail==Q) tail=0;
}
}
}
print(f[1][X][Y]);
return 0;
}

Description

The pasture contains a small, contiguous grove of trees that has no 'holes' in the middle of the it. Bessie wonders: how far is it to walk around that grove and get back to my starting position? She's just sure there is a way to do it by going from her start location to successive locations by walking horizontally, vertically, or diagonally and counting each move as a single step. Just looking at it, she doesn't think you could pass 'through' the grove on a tricky diagonal. Your job is to calculate the minimum number of steps she must take. Happily, Bessie lives on a simple world where the pasture is represented by a grid with R rows and C columns (1 <= R <= 50, 1 <= C <= 50). Here's a typical example where '.' is pasture (which Bessie may traverse), 'X' is the grove of trees, '*' represents Bessie's start and end position, and '+' marks one shortest path she can walk to circumnavigate the grove (i.e., the answer): ...+... ..+X+.. .+XXX+. ..+XXX+ ..+X..+ ...+++* The path shown is not the only possible shortest path; Bessie might have taken a diagonal step from her start position and achieved a similar length solution. Bessie is happy that she's starting 'outside' the grove instead of in a sort of 'harbor' that could complicate finding the best path.

牧场里有一片树林,林子里没有坑.
    贝茜很想知道,最少需要多少步能围绕树林走一圈,最后回到起点.她能上下左右走,也能走对角线格子.牧场被分成R行C列 (1≤R≤50,1≤C≤50).下面是一张样例的地图,其中“.”表示贝茜可以走的空地,  “X”表示树林,  “*”表示起点.而贝茜走的最近的路 已经特别地用“+”表示出来.
 
题目保证,最短的路径一定可以找到.

Input

* Line 1: Two space-separated integers: R and C

* Lines 2..R+1: Line i+1 describes row i with C characters (with no spaces between them).

    第1行输入R和C,接下来R行C列表示一张地图.地图中的符号如题干所述.

Output

* Line 1: The single line contains a single integer which is the smallest number of steps required to circumnavigate the grove.

    输出最少的步数.

Sample Input

6 7
.......
...X...
..XXX..
...XXX.
...X...
......*

Sample Output

13

【BZOJ】1656:[Usaco2006 Jan]The Grove 树木(bfs+特殊的技巧)的更多相关文章

  1. BZOJ 1656 [Usaco2006 Jan] The Grove 树木:bfs【射线法】

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1656 题意: 给你一个n*m的地图,'.'表示空地,'X'表示树林,'*'表示起点. 所有 ...

  2. bzoj:1656 [Usaco2006 Jan] The Grove 树木

    Description The pasture contains a small, contiguous grove of trees that has no 'holes' in the middl ...

  3. bzoj1656: [Usaco2006 Jan] The Grove 树木 (bfs+新姿势)

      题目大意:一个n*m的图中,“.”可走,“X”不可走,“*”为起点,问从起点开始绕所有X一圈回到起点最少需要走多少步. 一开始看到这题,自己脑洞了下怎么写,应该是可过,然后跑去看了题解,又学会了一 ...

  4. 【BZOJ-1656】The Grove 树木 BFS + 射线法

    1656: [Usaco2006 Jan] The Grove 树木 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 186  Solved: 118[Su ...

  5. BZOJ 1718: [Usaco2006 Jan] Redundant Paths 分离的路径( tarjan )

    tarjan求边双连通分量, 然后就是一棵树了, 可以各种乱搞... ----------------------------------------------------------------- ...

  6. bzoj 1654: [Usaco2006 Jan]The Cow Prom 奶牛舞会 -- Tarjan

    1654: [Usaco2006 Jan]The Cow Prom 奶牛舞会 Time Limit: 5 Sec  Memory Limit: 64 MB Description The N (2 & ...

  7. BZOJ 1718: [Usaco2006 Jan] Redundant Paths 分离的路径

    Description 给出一个无向图,求将他构造成双连通图所需加的最少边数. Sol Tarjan求割边+缩点. 求出割边,然后缩点. 将双连通分量缩成一个点,然后重建图,建出来的就是一棵树,因为每 ...

  8. bzoj:1654 [Usaco2006 Jan]The Cow Prom 奶牛舞会

    Description The N (2 <= N <= 10,000) cows are so excited: it's prom night! They are dressed in ...

  9. BZOJ——1720: [Usaco2006 Jan]Corral the Cows 奶牛围栏

    http://www.lydsy.com/JudgeOnline/problem.php?id=1720 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1 ...

随机推荐

  1. 正则表达式匹配a标签或div标签

    这里以a标签为例 a标签的href var a='<P><A href=\'~abc/ccg/ab.jpg\' width="3">文字</A> ...

  2. 细数Python的特殊方法一:集合类

    1. 特殊方法汇总列表     2. 仿集合类 __len__:返回对象的长度 __getitem__:获得某一项的值 __setitem__:设置莫一项的值 __delitem__删除某一项 __c ...

  3. Unity3D优化之合并网格

    原文地址点击这里

  4. 算法笔记_049:奇偶数排序(Java)

    目录 1 问题描述 2 解决方案 2.1 一头一尾指针往中间扫描法 2.2 一前一后两个指针同时往后扫描法   1 问题描述 给定一个整数数组,请调整 数组中数的顺序,使得所有奇数位于数组的前半部分, ...

  5. <c:forEach items="${revertList}" varStatus="reverts" var="revert" > <dl >

    <c:forEach>标签用于通用数据循环,它有以下属性 属 性 描 述 是否必须 缺省值 items 进行循环的项目 否 无 begin 开始条件 否 0 end 结束条件 否 集合中的 ...

  6. 理解Linux系统中的load average

    理解Linux系统中的load average(图文版) 博客分类: Linux linux load nagios  一.什么是load average? linux系统中的Load对当前CPU工作 ...

  7. Python-常用库扩展

    图片处理: PIL HTTP请求模拟: requests

  8. 异常:Caused by: java.lang.NoSuchMethodError: javax.persistence.OneToMany.orphanRemoval()Z/Caused by: java.lang.NoSuchMethodError: javax.persistence.JoinColumn.foreign

    Spring3.0 + Hibernate3.5:启动服务器报:Caused by: java.lang.NoSuchMethodError: javax.persistence.OneToMany. ...

  9. CentOS安装rz\sz命令

    执行以下命令进行安装: yum install lrzsz 安装完成后即可操作rz和sz命令. rz:本地文件上传. sz:Linux系统文件下载到本地.

  10. 用GDB命令PO(print-object)打印UIView的视图层级

    UIView有一个私有方法: recursiveDescription 这个方法可以显示出当前视图的详细层级,可以在代码中直接调用,也可以在GDB中调用,在GDB中调用时需要借助另一个GDB命令:pr ...