题目链接:BZOJ - 1016

题目分析

最小生成树的两个性质:

同一个图的最小生成树,满足:

1)同一种权值的边的个数相等

2)用Kruscal按照从小到大,处理完某一种权值的所有边后,图的连通性相等

这样,先做一次Kruscal求出每种权值的边的条数,再按照权值从小到大,对每种边进行 DFS, 求出这种权值的边有几种选法。

最后根据乘法原理将各种边的选法数乘起来就可以了。

特别注意:在DFS中为了在向下DFS之后消除决策影响,恢复f[]数组之前的状态,在DFS中调用的Find()函数不能路径压缩。

代码

#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <cstdio>
#include <algorithm> using namespace std; const int MaxN = 100 + 5, MaxM = 1000 + 5, Mod = 31011; int n, m, Top, Sum, Cnt;
int f[MaxN], L[MaxM], R[MaxM], Num[MaxM]; typedef long long LL;
LL Ans; struct Edge
{
int u, v, w;
} E[MaxM]; inline bool Cmp(Edge e1, Edge e2)
{
return e1.w < e2.w;
} inline int Find(int x, int o)
{
int i, j, k;
j = x;
while (j != f[j]) j = f[j];
if (o == 1) return j;
i = x;
while (i != j)
{
k = i;
i = f[i];
f[k] = j;
}
return j;
} void DFS(int Type, int x, int y)
{
if (x == R[Type] + 1)
{
if (y == Num[Type]) ++Cnt;
return;
}
int fx, fy;
fx = Find(E[x].u, 1); fy = Find(E[x].v, 1);
if (fx != fy)
{
f[fx] = fy;
DFS(Type, x + 1, y + 1);
f[fx] = fx;
}
DFS(Type, x + 1, y);
} int main()
{
scanf("%d%d", &n, &m);
for (int i = 1; i <= m; ++i)
scanf("%d%d%d", &E[i].u, &E[i].v, &E[i].w);
sort(E + 1, E + m + 1, Cmp);
Top = 0; Sum = 0;
int fx, fy;
for (int i = 1; i <= n; ++i) f[i] = i;
for (int i = 1; i <= m; ++i)
{
if (i == 1 || E[i].w != E[i - 1].w) L[++Top] = i;
R[Top] = i;
fx = Find(E[i].u, 0); fy = Find(E[i].v, 0);
if (fx != fy)
{
f[fx] = fy;
++Num[Top];
++Sum;
}
}
if (Sum != n - 1)
{
printf("0\n");
return 0;
}
for (int i = 1; i <= n; ++i) f[i] = i;
Ans = 1;
for (int i = 1; i <= Top; ++i)
{
if (Num[i] == 0) continue;
Cnt = 0;
DFS(i, L[i], 0);
Ans = Ans * (LL)Cnt % Mod;
for (int j = L[i]; j <= R[i]; ++j)
{
fx = Find(E[j].u, 0); fy = Find(E[j].v, 0);
if (fx != fy) f[fx] = fy;
}
}
printf("%d\n", (int)Ans);
return 0;
}

  

[BZOJ 1016] [JSOI2008] 最小生成树计数 【DFS】的更多相关文章

  1. BZOJ 1016: [JSOI2008]最小生成树计数( kruskal + dfs )

    不同最小生成树中权值相同的边数量是一定的, 而且他们对连通性的贡献是一样的.对权值相同的边放在一起(至多10), 暴搜他们有多少种方案, 然后乘法原理. ----------------------- ...

  2. [BZOJ]1016 JSOI2008 最小生成树计数

    最小生成树计数 题目描述 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同 ...

  3. bzoj 1016: [JSOI2008]最小生成树计数【dfs+克鲁斯卡尔】

    有一个性质就是组成最小生成树总边权值的若干边权总是相等的 这意味着按边权排序后在权值相同的一段区间内的边能被选入最小生成树的条数是固定的 所以先随便求一个最小生成树,把每段的入选边数记录下来 然后对于 ...

  4. BZOJ.1016.[JSOI2008]最小生成树计数(Matrix Tree定理 Kruskal)

    题目链接 最小生成树有两个性质: 1.在不同的MST中某种权值的边出现的次数是一定的. 2.在不同的MST中,连接完某种权值的边后,形成的连通块的状态是一样的. \(Solution1\) 由这两个性 ...

  5. bzoj 1016 [JSOI2008]最小生成树计数——matrix tree(相同权值的边为阶段缩点)(码力)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1016 就是缩点,每次相同权值的边构成的联通块求一下matrix tree.注意gauss里的 ...

  6. BZOJ 1016 [JSOI2008]最小生成树计数 ——Matrix-Tree定理

    考虑从小往大加边,然后把所有联通块的生成树个数计算出来. 然后把他们缩成一个点,继续添加下一组. 最后乘法原理即可. 写起来很恶心 #include <queue> #include &l ...

  7. 【BZOJ 1016】 1016: [JSOI2008]最小生成树计数 (DFS|矩阵树定理)

    1016: [JSOI2008]最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树 ...

  8. 1016: [JSOI2008]最小生成树计数

    1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 6200  Solved: 2518[Submit][St ...

  9. 【BZOJ】1016: [JSOI2008]最小生成树计数 深搜+并查集

    最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小 ...

随机推荐

  1. mysql加入�管理员

    1.首先用超级管理员登录,然后点击权限button 2.点击加入�新用户,填写登录名和password,全局权限不用选,点击新建用户button 3.编辑新加入�的用户(编辑权限) 4.找到" ...

  2. 空格&amp;nbsp在不同浏览器中显示距离不一致问题解决方法

      在ie.firefox.chrome浏览器上显示的效果不太一样,主要是前面的空格宽度不同. 网上资料说不同的浏览器会有不同的默认字体.一般 IE默认字体都是宋体,而firefox和chrome的默 ...

  3. 5 Common Interview Mistakes that Could Cost You Your Dream Job (and How to Avoid Them)--ref

    There have been many articles on our site on software testing interviews. That is because, we, as IT ...

  4. C# DataTable怎么合计字段

    DataTable dt = new DataTable(); var age=dt.Compute("avg(age)",""); var height =d ...

  5. Android(java)学习笔记186:对ListView等列表组件中数据进行增、删、改操作

    1.ListView介绍 解决大量的相似的数据显示问题 采用了MVC模式: M: model (数据模型) V:  view  (显示的视图) C: controller 控制器 入门案例: acit ...

  6. dll注册到GAC还是bin - sharepoint程序

    通常来说程序在使用dll的时候,会先去GAC中查找是否有存在合适的dll,然后才会到应用程序下的bin目录去查找: 前几天遇到了一个奇葩问题,web项目工程添加了一个第三方dll的引用,然后把这个第三 ...

  7. ANDROID 通过监听来电去电,并弹出悬浮窗

    要监听android打电话和接电话,有一种的是通过新建一个Receiver继承自BroadcastReceiver. 还有一种也可通过PhoneStateListener来实现.今天就说说后面一种,废 ...

  8. Gradle插件

    1.方法数统计 classpath 'com.getkeepsafe.dexcount:dexcount-gradle-plugin:0.6.1' apply plugin: 'com.getkeep ...

  9. svn出错问题(用户名密码有修改以及资源url改变时)

    用eclipse 同步SVN服务器宛然无法访问了: org.tigris.subversion.javahl.ClientException: RA layer request failed svn: ...

  10. (转)Spring 读书笔记-----使用Spring容器(一)

    Spring有两个核心接口:BeanFactory和ApplicationContext,其中ApplicationContext是BeanFactory的子接口.他们都可代表Spring容器,Spr ...