博弈论(SG函数):HNOI 2007 分裂游戏
Description
聪聪和睿睿最近迷上了一款叫做分裂的游戏。 该游戏的规则试: 共有 n 个瓶子, 标号为 0,1,2.....n-1, 第 i 个瓶子中装有 p[i]颗巧克力豆,两个人轮流取豆子,每一轮每人选择 3 个瓶子。标号为 i,j,k, 并要保证 i < j , j < = k 且第 i 个瓶子中至少要有 1 颗巧克力豆,随后这个人从第 i 个瓶子中拿走一颗豆 子并在 j,k 中各放入一粒豆子(j 可能等于 k) 。如果轮到某人而他无法按规则取豆子,那么他将输 掉比赛。胜利者可以拿走所有的巧克力豆! 两人最后决定由聪聪先取豆子,为了能够得到最终的巧克力豆,聪聪自然希望赢得比赛。他思考 了一下,发现在有的情况下,先拿的人一定有办法取胜,但是他不知道对于其他情况是否有必胜 策略,更不知道第一步该如何取。他决定偷偷请教聪明的你,希望你能告诉他,在给定每个瓶子 中的最初豆子数后是否能让自己得到所有巧克力豆,他还希望你告诉他第一步该如何取,并且为 了必胜,第一步有多少种取法? 假定 1 < n < = 21,p[i] < = 10000
Input
输入文件第一行是一个整数t表示测试数据的组数,接下来为t组测试数据(t<=10)。每组测试数据的第一行是瓶子的个数n,接下来的一行有n个由空格隔开的非负整数,表示每个瓶子中的豆子数。
Output
对 于每组测试数据,输出包括两行,第一行为用一个空格两两隔开的三个整数,表示要想赢得游戏,第一步应该选取的3个瓶子的编号i,j,k,如果有多组符合要 求的解,那么输出字典序最小的一组。如果无论如何都无法赢得游戏,那么输出用一个空格两两隔开的三个-1。第二行表示要想确保赢得比赛,第一步有多少种不 同的取法。
Sample Input
4
1 0 1 5000
3
0 0 1
Sample Output
1
-1 -1 -1
0
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int N=;
int sg[N],vis[N*N*N],f[N];
//注意这里mex的值域很大!!!
int T,n,ans,tot; int main(){
freopen("game.in","r",stdin);
freopen("game.out","w",stdout);
int pi,pj,pk;scanf("%d",&T);
for(int i=,p;i<=;i++){
memset(vis,,sizeof(vis));
for(int j=i-;j>=;j--)
for(int k=j;k>=;k--)
vis[sg[j]^sg[k]]=;
for(p=;vis[p];p++);sg[i]=p;
}
while(T--){
scanf("%d",&n);ans=;
for(int i=;i<=n;i++){
scanf("%d",&f[i]);
if(f[i]&)ans^=sg[n-i+];
}
if(ans==)
printf("-1 -1 -1\n0\n");
else{
pi=pj=pk=tot=;
for(int i=n-;i>=;i--)if(f[i])
for(int j=n;j>=i+;j--)
for(int k=n;k>=j;k--)
if((sg[n-i+]^sg[n-j+]^sg[n-k+])==ans)
{tot+=;pi=i-;pj=j-;pk=k-;}
printf("%d %d %d\n%d\n",pi,pj,pk,tot); }
} return ;
}
思路真的很简单很简单……
博弈论(SG函数):HNOI 2007 分裂游戏的更多相关文章
- bzoj1188 [HNOI2007]分裂游戏 博弈论 sg函数的应用
1188: [HNOI2007]分裂游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 973 Solved: 599[Submit][Status ...
- [BZOJ 1188] [HNOI2007] 分裂游戏 【博弈论|SG函数】
题目链接:BZOJ - 1188 题目分析 我们把每一颗石子看做一个单个的游戏,它的 SG 值取决于它的位置. 对于一颗在 i 位置的石子,根据游戏规则,它的后继状态就是枚举符合条件的 j, k.然后 ...
- [BZOJ 1874] [BeiJing2009 WinterCamp] 取石子游戏 【博弈论 | SG函数】
题目链接:BZOJ - 1874 题目分析 这个是一种组合游戏,是许多单个SG游戏的和. 就是指,总的游戏由许多单个SG游戏组合而成,每个SG游戏(也就是每一堆石子)之间互不干扰,每次从所有的单个游戏 ...
- [2016北京集训试题6]魔法游戏-[博弈论-sg函数]
Description Solution 首先,每个节点上的权值可以等价于该节点上有(它的权的二进制位数+1)个石子,每次可以拿若干个石子但不能不拿. 然后就发现这和NIM游戏很像,就计算sg函数em ...
- 【GZOI2015】石子游戏 博弈论 SG函数
题目大意 有\(n\)堆石子,两个人可以轮流取石子.每次可以选择一堆石子,做出下列的其中一点操作: 1.移去整堆石子 2.设石子堆中有\(x\)个石子,取出\(y\)堆石子,其中\(1\leq y&l ...
- 【基础操作】博弈论 / SG 函数详解
博弈死我了……(话说哪个小学生会玩博弈论提到的这类弱智游戏,还取石子) 先推荐两个文章链接:浅谈算法——博弈论(从零开始的博弈论) 博弈论相关知识及其应用 This article was updat ...
- 2016多校联合训练1 B题Chess (博弈论 SG函数)
题目大意:一个n(n<=1000)行,20列的棋盘上有一些棋子,两个人下棋,每回合可以把任意一个棋子向右移动到这一行的离这个棋子最近的空格上(注意这里不一定是移动最后一个棋子),不能移动到棋盘外 ...
- POJ 2425 A Chess Game 博弈论 sg函数
http://poj.org/problem?id=2425 典型的sg函数,建图搜sg函数预处理之后直接求每次游戏的异或和.仍然是因为看不懂题目卡了好久. 这道题大概有两个坑, 1.是搜索的时候vi ...
- POJ2425 A Chess Game[博弈论 SG函数]
A Chess Game Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 3917 Accepted: 1596 Desc ...
随机推荐
- [转]eclipse github 提交代码
1 git add2 git commit3 git pull (会产生冲突) 分成自动合并和手动合并4 处理冲突的文件 5 git push 本次commit 我用的是Eclipse的插件EGit ...
- C#语法糖之第三篇: 匿名类 & 匿名方法
今天时间有点早,所以上来在写一篇文章吧,继续上一篇的文章,在我们平时编程过程中有没有遇到过这样的一个情景,你定义的类只是用来封装一些相关的数据,但并不需要相关联的方法.事件和其他自定义的功能.同时,这 ...
- 使用Preference保存设置
http://blog.csdn.net/barryhappy/article/details/7381544 Android中有四种持久化数据的方法:SQLite数据库.文件存储.Preferenc ...
- MongoDB的索引
一.索引详讲 索引是什么,索引就好比一本书的目录,当我们想找某一章节的时候,通过书籍的目录可以很快的找到,所以适当的加入索引可以提高我们查询的数据的速度. 准备工作,向MongoDB中插入20000条 ...
- 通过C#去调用C++编写的DLL
这个问题缠了我2个小时才弄出来,其实很简单.当对方提供一个dll给你使用时,你需要去了解这个dll 是由什么语言写的,怎么编译的,看它的编译类型.这样即使在没有头绪时,你可以先尝使用一些比较热门的编译 ...
- Analyze 静态分析工具中显示 大量的CF类型指针 内存leak 问题, Core Foundation 类型指针内存泄漏
Analyze 静态分析工具中显示 大量的CF类型指针 内存leak 问题 今天使用Analyze 看了下项目, 解决办法,项目中使用了ARC,OC的指针类型我们完全不考虑release的问题 ...
- 多重背包的入门题目HDU1171,2191,2844.
首先,什么叫多重背包呢? 大概意思就是:一个背包有V总容量,有N种物品,其价值分别为Val1,Val2--,Val3,体积对应的是Vol1,Vol2,--,Vol3,件数对应Num1,Num2--,N ...
- ACM HDU 2044 一只小蜜蜂
Problem Description 有一只经过训练的蜜蜂只能爬向右侧相邻的蜂房,不能反向爬行.请编程计算蜜蜂从蜂房a爬到蜂房b的可能路线数. 其中,蜂房的结构如下所示. Input 输入数据的第一 ...
- php日期处理
$datetime=strtotime(date("Y-m-d",time()));//获取当前日期并转换成时间戳 $datetime=$datetime+86400;//在时间戳 ...
- LINUX 下mysql数据库导出
mysqldump -u root -p dbname > db.sql