相对于使用MapReduce或者Spark Application的方式进行数据分析,使用Hive SQL或Spark SQL能为我们省去不少的代码工作量,而Hive SQL或Spark SQL本身内置的各类UDF也为我们的数据处理提供了不少便利的工具,当这些内置的UDF不能满足于我们的需要时,Hive SQL或Spark SQL还为我们提供了自定义UDF的相关接口,方便我们根据自己的需求进行扩展。
 
在Hive的世界里使用自定义UDF的过程是比较复杂的。我们需要根据需求使用Java语言开发相应的UDF(UDAF、UDTF),然后将UDF的代码及其依赖编译打包为Jar,使用方法有两种:
 
(1)临时函数
 
在一次会话(Session)中使用如下语句创建临时函数:
 
ADD JAR /run/jar/udf_test.jar;
CREATE TEMPORARY FUNCTION my_add AS 'com.hive.udf.Add';
 
这种方式有一个缺点:每一次会话过程中使用函数时都需要创建,而且仅在当前会话中有效。
 
(2)永久函数
 
这个特性需要高版本的Hive支持,它的好处是可以将UDF Jar存放至HDFS,函数仅需要创建一次即可以永久使用,如下:
 
CREATE FUNCTION func.ipToLocationBySina AS 'com.sina.dip.hive.function.IPToLocationBySina' USING JAR 'hdfs://dip.cdh5.dev:8020/user/hdfs/func/location.jar';
 
虽然永久函数相对于临时函数有一定优势,但Java语言的开发门槛很大程度上妨碍了UDF在实际数据分析过程中使用,毕竟我们的数据分析师多数是以Python、SQL为主要分析工具的,每一次UDF的开发都需要工程师的参与,开发效率与应用效果都是不是很好(可能需要频繁更新UDF的问题),PySpark的出现确很好地解决了这个问题:它可以非常方便地将一个普通的Python函数注册为一个UDF。
 
为了说明如何在Spark(Hive) SQL中的使用Python UDF,我们首先模拟一张数据表,为了简单起见,该表仅有一行一列数据:
 
 
我们模拟了一张数据表temp_table,该表仅有一列,其中列名称为col,列类型为字符串且不允许包含Null,输出结果:
 
 
我们在表temp_table的基础之上演示UDF的使用方法:
 
 
首先我们定义一个普通的Python函数:func_string,为了简单起见它没有任何参数,仅仅返回一个简单的字符串;
 
然后我们通过HiveContext registerFunction即可以将函数func_string注册为UDF,registerFunction接收两个参数:UDF名称、UDF关联的Python函数;
 
最后我们可以在Spark(Hive) SQL中使用这个UDF,输出结果:
 
 
 
我们需要注意的是,HiveContext registerFunction实际上有三个参数:
 
 
name:UDF名称;
f:UDF关联的Python函数;
returnType:UDF(Python函数)返回值类型,默认为StringType()。
 
上述示例中因为我们的UDF函数的返回值类型为字符串,因此使用Hive registerFunction注册UDF时省略了参数returnType,即returnType默认值为StringType(),如果UDF(Python函数)的返回值类型不为字符串,则需要显式为其指定returnType。
 
我们以类型IntegerType、ArrayType、StructType、MapType为例演示需要显式指定returnType的情况。
 
(1)IntegerType
 
 
 
(2)ArrayType
 
 
 
注意:ArrayType(数组)必须确保元素类型的一致性,如指定UDF返回值类型为ArrayType(IntegerType()),则函数func_array的返回值类型必须为list或tuple,其中的元素类型必须为int。
 
(3)StructType
 
 
 
注意:StructType必须确保函数的返回值类型为tuple,而且使用HiveContext registerFunction注册UDF时需要依次为其中的元素指定名称各类型,如上述示例中每一个元素的名称为first,类型为IntegerType;第二个元素的名称为second,类型为FloatType;第三个元素的名称为third,类型为StringType。
 
(4)MapType
 
 
 
注意:MapType必须确保函数的返回值类型为dict,而且所有的“key”应保持类型一致,“value”也就保持类型一致。
 

Spark(Hive) SQL中UDF的使用(Python)的更多相关文章

  1. Spark(Hive) SQL中UDF的使用(Python)【转】

    相对于使用MapReduce或者Spark Application的方式进行数据分析,使用Hive SQL或Spark SQL能为我们省去不少的代码工作量,而Hive SQL或Spark SQL本身内 ...

  2. Spark(Hive) SQL数据类型使用详解(Python)

    Spark SQL使用时需要有若干“表”的存在,这些“表”可以来自于Hive,也可以来自“临时表”.如果“表”来自于Hive,它的模式(列名.列类型等)在创建时已经确定,一般情况下我们直接通过Spar ...

  3. Spark SQL中UDF和UDAF

    转载自:https://blog.csdn.net/u012297062/article/details/52227909 UDF: User Defined Function,用户自定义的函数,函数 ...

  4. 两种方式— 在hive SQL中传入参数

    第一种: sql = sql.format(dt=dt) 第二种: item_third_cate_cd_list = " 发发发 " ...... ""&qu ...

  5. Hive SQL 编译过程

    转自:http://www.open-open.com/lib/view/open1400644430159.html Hive跟Impala貌似都是公司或者研究所常用的系统,前者更稳定点,实现方式是 ...

  6. 【转】Hive SQL的编译过程

    Hive是基于Hadoop的一个数据仓库系统,在各大公司都有广泛的应用.美团数据仓库也是基于Hive搭建,每天执行近万次的Hive ETL计算流程,负责每天数百GB的数据存储和分析.Hive的稳定性和 ...

  7. Hive SQL的编译过程

    文章转自:http://tech.meituan.com/hive-sql-to-mapreduce.html Hive是基于Hadoop的一个数据仓库系统,在各大公司都有广泛的应用.美团数据仓库也是 ...

  8. 转:Hive SQL的编译过程

    Hive是基于Hadoop的一个数据仓库系统,在各大公司都有广泛的应用.美团数据仓库也是基于Hive搭建,每天执行近万次的Hive ETL计算流程,负责每天数百GB的数据存储和分析.Hive的稳定性和 ...

  9. Hive SQL的编译过程[转载自https://tech.meituan.com/hive-sql-to-mapreduce.html]

    https://tech.meituan.com/hive-sql-to-mapreduce.html Hive是基于Hadoop的一个数据仓库系统,在各大公司都有广泛的应用.美团数据仓库也是基于Hi ...

随机推荐

  1. C# 日期之间的间隔

    今天工作中,突然遇到要计算两个时间之间的天数,最后把自己的方法记录下来,其实挺简单的: DateTime dt1=Convert.ToDateTime("2014/8/1 23:53:31& ...

  2. javascript-图片横向无缝隙滚动(可在服务器运行)

    前两次弄'图片横向滚动'javascript,在本地上运行得很美,可是一上到我们学校后台的服务器,就有很多问题,这个算是行的了. css代码: <style type="text/cs ...

  3. javascript 动态操作Html

    <html> <body> <p>aaaaa</p> <input type="button" value="con ...

  4. Excel数据导入到oracle

    打开pl/sql,如图所示界面,点击菜单栏中的T00LS     ODBC Imtorper,打开ODBC Importer选项框       在Data fromODBC页中选择需要导入的文件的格式 ...

  5. 前端--json数据的处理及相关兼容问题

    JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式,采用完全独立于语言的文本格式,是理想的数据交换格式.同时,JSON是 JavaScript 原生格式,这意 ...

  6. java输入输出流(内容练习)

    1,编写一个程序,读取文件test.txt的内容并在控制台输出.如果源文件不存在,则显示相应的错误信息. package src; import java.io.File; import java.i ...

  7. 3 委托、匿名函数、lambda表达式

    委托.匿名函数.lambda表达式 在 2.0 之前的 C# 版本中,声明委托的唯一方法是使用命名方法.C# 2.0 引入了匿名方法,而在 C# 3.0 及更高版本中,Lambda 表达式取代了匿名方 ...

  8. 使用ArrayList对大小写字母的随机打印

    从a~z以及A~Z随机生成一个字母并打印:打印全部的字母 package com.liaojianya.chapter1; import java.util.ArrayList; /** * This ...

  9. 接触.net5年了,感觉自己的知识面很狭隘。

    08年毕业找工作期间开始接触网页开发,由于在学校了混了4年时间,我只能从html标记语言开始学习,后来应聘到一个网站建设公司,开始学习ps.Dreamweaver和asp.由于基础薄弱,一个月后离开了 ...

  10. ARM开发板系统移植-----rootfs的制作

    前面两篇文章分别介绍了mini2440开发板上运行的bootloader和kernel,到这里系统启动后其实是停留在一个“僵死”的状态---无法挂载根文件系统. 这里将介绍如何制作一个根文件系统,并且 ...