题意:有一个ACM工厂会生产一些电脑,在这个工厂里面有一些生产线,分别生产不同的零件,不过他们生产的电脑可能是一体机,所以只能一些零件加工后别的生产线才可以继续加工,比如产品A在生产线1号加工后继续前往生产线2号继续加工,直到成为完全产品。输入 P 意思是这个电脑需要P个零件,N表示有N个生产线,每个生产线都有最大加工量,并且需要什么零件和输出的是什么零件,0表示没有这个零件,1表示有这个零件,2表示有没有都可以。
样例说明:
3 4
1号: 15  
0 0 0
  -->  
0 1 0

2号: 10  
0 0 0
  -->  
0 1 1

3号: 30  
0 1 2
  -->  
1 1 1

4号: 3   
0 2 1
  -->  
1 1 1

1号生产线需要0 0 0这样的零件(这样的零件也就是无限制零件,源点),它可以把零件加工成 0 1 0 这个样子,然后 3 号生产线可以接受这种零件,并且加工成 1 1 1 也就是成品,到这样也就加工成功了,因为1号生产线每次可以加工 15 个零件,所以1->3的加工量就是 15,同理 2->3的加工量是 10,所以结果是 25。


分析:很明显的网络流题目,感觉难点应该在题目阅读和建图上.....可以用0当做源点 N+1当做汇点,然后每两点都进行匹配一些,看看是否可以连接,路径的权值为出点的生产能力。


注意:因为每个生产线的生产能力有限,所以需要拆点,防止超出他的生产能力,比如下图如果不拆点结果就会使20,实际上是10

还有一定一定要注意的输入输出没有 


Sample output 1” “



Sample output 1


”!!!!就是这个坑我错了好多次


/**************************分割线**************分割线**************************************/

#include<stdio.h>
#include<string.h>
#include<queue>
using namespace std; const int MAXN = ;
const int oo = 1e9+; int G[MAXN][MAXN], layer[MAXN], G1[MAXN][MAXN];
int P, N;///需要P个零件,N条生产线
///表示生产线,需要的零件in,输出的零件out,最大生产值Flow
struct node{int in[MAXN], out[MAXN], Flow;}a[MAXN]; void InIt()
{
    memset(G, false, sizeof(G));
    memset(G1, false, sizeof(G1));     for(int i=; i<=P; i++)
    {
        a[].out[i] = ;
        a[].in[i] = ;
        a[N+].in[i] = ;
        a[N+].out[i] = ;
    }
    a[].Flow = oo;
    a[N+].Flow = oo;
}
bool canLink(node n1, node n2)
{///n1输出的零件是否是n2需要的
    for(int i=; i<=P; i++)
    {
        if(n1.out[i] != n2.in[i] && n2.in[i] != )
            return false;
    }     return true;
}
bool bfs(int start, int End)
{
    int used[MAXN] = {};
    queue<int> Q;Q.push(start);
    memset(layer, -, sizeof(layer));
    used[start] = true, layer[start] = ;     while(Q.size())
    {
        int u = Q.front();Q.pop();         if(u == End)return true;         for(int i=; i<=End; i++)
        {
            if(G[u][i] && !used[i])
            {
                used[i] = true;
                layer[i] = layer[u] + ;
                Q.push(i);
            }
        }
    }     return false;
}
int dfs(int u, int MaxFlow, int End)
{
    if(u == End)return MaxFlow;     int uFlow = ;     for(int i=; i<=End; i++)
    {
        if(layer[u]+==layer[i] && G[u][i])
        {
            int flow = min(MaxFlow-uFlow, G[u][i]);
            flow = dfs(i, flow, End);             G[u][i] -= flow;
            G[i][u] += flow;
            uFlow += flow;             if(uFlow == MaxFlow)
                break;
        }
    }     return uFlow;
}
int dinic(int start, int End)
{
    int MaxFlow = ;     while(bfs(start, End) == true)
        MaxFlow += dfs(start, oo, End);     return MaxFlow;
} int main()
{
    while(scanf("%d%d", &P, &N) != EOF)
    {
        int i, j;         InIt();         for(i=; i<=N+; i++)
        {
            scanf("%d", &a[i].Flow);
            for(j=; j<=P; j++)
                scanf("%d", &a[i].in[j]);
            for(j=; j<=P; j++)
                scanf("%d", &a[i].out[j]);
        }         N+=;         for(i=; i<=N; i++)
        for(j=; j<=N; j++)
        {
            if(i == j)
            {
                G1[i][j+N] = G[i][j+N] = a[i].Flow;
            }
            else if(i!=j && canLink(a[i], a[j]) == true)
            {
                G1[i+N][j] = G[i+N][j] = a[i].Flow;
            }
        }         int MaxFlow = dinic(, N*);
        int k=, x[MAXN], y[MAXN], flow[MAXN];         for(i=; i<N; i++)
        for(j=; j<N; j++)
        {
            if(G[i+N][j] < G1[i+N][j])
            {
                x[k] = i;
                y[k] = j;
                flow[k++] = G1[i+N][j] - G[i+N][j];
            }
        }         printf("%d %d\n", MaxFlow, k);
        for(i=; i<k; i++)
            printf("%d %d %d\n", x[i]-, y[i]-, flow[i]);
    }     return ;
}
/**
输入 3 5
10  0 0 0  0 1 0
10  0 0 0  0 1 0
10  0 1 0  0 1 1
10  0 1 1  1 1 1
10  0 1 1  1 1 1 输出 10 2
1 3 10
3 4 10 **/

A - ACM Computer Factory - poj 3436(最大流)的更多相关文章

  1. A - ACM Computer Factory POJ - 3436 网络流

    A - ACM Computer Factory POJ - 3436 As you know, all the computers used for ACM contests must be ide ...

  2. ACM Computer Factory - poj 3436 (最大流)

      Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5949   Accepted: 2053   Special Judge ...

  3. (网络流)ACM Computer Factory --POJ --3436

    链接: http://poj.org/problem?id=3436 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=82835#probl ...

  4. ACM Computer Factory POJ - 3436 网络流拆点+路径还原

    http://poj.org/problem?id=3436 每台电脑有$p$个组成部分,有$n$个工厂加工电脑. 每个工厂对于进入工厂的半成品的每个组成部分都有要求,由$p$个数字描述,0代表这个部 ...

  5. POJ-3436:ACM Computer Factory (Dinic最大流)

    题目链接:http://poj.org/problem?id=3436 解题心得: 题目真的是超级复杂,但解出来就是一个网络流,建图稍显复杂.其实提炼出来就是一个工厂n个加工机器,每个机器有一个效率w ...

  6. POJ 3436 ACM Computer Factory (网络流,最大流)

    POJ 3436 ACM Computer Factory (网络流,最大流) Description As you know, all the computers used for ACM cont ...

  7. Poj 3436 ACM Computer Factory (最大流)

    题目链接: Poj 3436 ACM Computer Factory 题目描述: n个工厂,每个工厂能把电脑s态转化为d态,每个电脑有p个部件,问整个工厂系统在每个小时内最多能加工多少台电脑? 解题 ...

  8. POJ 3436:ACM Computer Factory 网络流

    ACM Computer Factory Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6247   Accepted: 2 ...

  9. poj3436 ACM Computer Factory, 最大流,输出路径

    POJ 3436 ACM Computer Factory 电脑公司生产电脑有N个机器.每一个机器单位时间产量为Qi. 电脑由P个部件组成,每一个机器工作时仅仅能把有某些部件的半成品电脑(或什么都没有 ...

随机推荐

  1. centos7.2下安装mysql5.7,使用rpm包安装

    0.环境 本文操作系统: CentOS 7.2.1511 x86_64 MySQL 版本: 5.7.16 1.卸载系统自带的 mariadb-lib[root@centos-linux ~]# rpm ...

  2. (转)java之多线程

    Java线程:概念与原理 一.操作系统中线程和进程的概念 现在的操作系统是多任务操作系统.多线程是实现多任务的一种方式. 进程是指一个内存中运行的应用程序,每个进程都有自己独立的一块内存空间,一个进程 ...

  3. java邮件客户端

    /*** *邮件VO **/package net.jk.util.email.vo; import java.util.Date; import java.util.List; import net ...

  4. .NET读取Excel

    1.代码 string strConn = "Provider=Microsoft.ACE.OLEDB.12.0;Data Source=" + Path + ";Ext ...

  5. .Net程序员关于微信公众平台测试账户配置 项目总结

    今天项目第一次验收,夜晚吃过晚饭后,想把项目中用到的关于微信配置总结一下,虽然网上关于这方面的资料很多很多,还有官方API,但是总感觉缺点什么,就像期初做这个项目时,各方面找了很久的资料,说说配置吧! ...

  6. android studio主题设置-笔记3

    主题背景设置(就是工具黑色背景还是白色背景),路径:File-Settings-Appearance

  7. iOS横竖屏切换的一些坑(持续更新)

    最近在做视频类的App,遇到视频滚动播放的坑,紧接着就是横竖屏问题.之前太过天真不想做横竖屏配置.只是想旋转视频View,但是分享什么的包括AlertView还是竖屏样式,项目着急上线(1周提交一次也 ...

  8. 重新开始学习javase_集合_Map

    一,Map之HashMap(转:http://blog.csdn.net/zheng0518/article/details/42197049) 1.    HashMap概述: HashMap是基于 ...

  9. restrict和volatile的作用

    每当看到这两个关键字,我都无比的头痛啊,当时看到理解了一下就明白了,但是在此遇到就忘记是怎么用的了,今天就索性写一写吧,好记性不如烂笔头呗,烂笔头不如存在网上. restrict是c99引入的,关键字 ...

  10. arp断网攻击解决办法

    局域网中有这个提示arp断网攻击是正常的,说明防火墙已经拦截了,是有人用P2P工具控制你的网速,或者是局域网有机器中病毒了也会有这样的提示,不过不用担心,今天给大家带来几个防止arp断网攻击的办法,希 ...