题意:有一个ACM工厂会生产一些电脑,在这个工厂里面有一些生产线,分别生产不同的零件,不过他们生产的电脑可能是一体机,所以只能一些零件加工后别的生产线才可以继续加工,比如产品A在生产线1号加工后继续前往生产线2号继续加工,直到成为完全产品。输入 P 意思是这个电脑需要P个零件,N表示有N个生产线,每个生产线都有最大加工量,并且需要什么零件和输出的是什么零件,0表示没有这个零件,1表示有这个零件,2表示有没有都可以。
样例说明:
3 4
1号: 15  
0 0 0
  -->  
0 1 0

2号: 10  
0 0 0
  -->  
0 1 1

3号: 30  
0 1 2
  -->  
1 1 1

4号: 3   
0 2 1
  -->  
1 1 1

1号生产线需要0 0 0这样的零件(这样的零件也就是无限制零件,源点),它可以把零件加工成 0 1 0 这个样子,然后 3 号生产线可以接受这种零件,并且加工成 1 1 1 也就是成品,到这样也就加工成功了,因为1号生产线每次可以加工 15 个零件,所以1->3的加工量就是 15,同理 2->3的加工量是 10,所以结果是 25。


分析:很明显的网络流题目,感觉难点应该在题目阅读和建图上.....可以用0当做源点 N+1当做汇点,然后每两点都进行匹配一些,看看是否可以连接,路径的权值为出点的生产能力。


注意:因为每个生产线的生产能力有限,所以需要拆点,防止超出他的生产能力,比如下图如果不拆点结果就会使20,实际上是10

还有一定一定要注意的输入输出没有 


Sample output 1” “



Sample output 1


”!!!!就是这个坑我错了好多次


/**************************分割线**************分割线**************************************/

#include<stdio.h>
#include<string.h>
#include<queue>
using namespace std; const int MAXN = ;
const int oo = 1e9+; int G[MAXN][MAXN], layer[MAXN], G1[MAXN][MAXN];
int P, N;///需要P个零件,N条生产线
///表示生产线,需要的零件in,输出的零件out,最大生产值Flow
struct node{int in[MAXN], out[MAXN], Flow;}a[MAXN]; void InIt()
{
    memset(G, false, sizeof(G));
    memset(G1, false, sizeof(G1));     for(int i=; i<=P; i++)
    {
        a[].out[i] = ;
        a[].in[i] = ;
        a[N+].in[i] = ;
        a[N+].out[i] = ;
    }
    a[].Flow = oo;
    a[N+].Flow = oo;
}
bool canLink(node n1, node n2)
{///n1输出的零件是否是n2需要的
    for(int i=; i<=P; i++)
    {
        if(n1.out[i] != n2.in[i] && n2.in[i] != )
            return false;
    }     return true;
}
bool bfs(int start, int End)
{
    int used[MAXN] = {};
    queue<int> Q;Q.push(start);
    memset(layer, -, sizeof(layer));
    used[start] = true, layer[start] = ;     while(Q.size())
    {
        int u = Q.front();Q.pop();         if(u == End)return true;         for(int i=; i<=End; i++)
        {
            if(G[u][i] && !used[i])
            {
                used[i] = true;
                layer[i] = layer[u] + ;
                Q.push(i);
            }
        }
    }     return false;
}
int dfs(int u, int MaxFlow, int End)
{
    if(u == End)return MaxFlow;     int uFlow = ;     for(int i=; i<=End; i++)
    {
        if(layer[u]+==layer[i] && G[u][i])
        {
            int flow = min(MaxFlow-uFlow, G[u][i]);
            flow = dfs(i, flow, End);             G[u][i] -= flow;
            G[i][u] += flow;
            uFlow += flow;             if(uFlow == MaxFlow)
                break;
        }
    }     return uFlow;
}
int dinic(int start, int End)
{
    int MaxFlow = ;     while(bfs(start, End) == true)
        MaxFlow += dfs(start, oo, End);     return MaxFlow;
} int main()
{
    while(scanf("%d%d", &P, &N) != EOF)
    {
        int i, j;         InIt();         for(i=; i<=N+; i++)
        {
            scanf("%d", &a[i].Flow);
            for(j=; j<=P; j++)
                scanf("%d", &a[i].in[j]);
            for(j=; j<=P; j++)
                scanf("%d", &a[i].out[j]);
        }         N+=;         for(i=; i<=N; i++)
        for(j=; j<=N; j++)
        {
            if(i == j)
            {
                G1[i][j+N] = G[i][j+N] = a[i].Flow;
            }
            else if(i!=j && canLink(a[i], a[j]) == true)
            {
                G1[i+N][j] = G[i+N][j] = a[i].Flow;
            }
        }         int MaxFlow = dinic(, N*);
        int k=, x[MAXN], y[MAXN], flow[MAXN];         for(i=; i<N; i++)
        for(j=; j<N; j++)
        {
            if(G[i+N][j] < G1[i+N][j])
            {
                x[k] = i;
                y[k] = j;
                flow[k++] = G1[i+N][j] - G[i+N][j];
            }
        }         printf("%d %d\n", MaxFlow, k);
        for(i=; i<k; i++)
            printf("%d %d %d\n", x[i]-, y[i]-, flow[i]);
    }     return ;
}
/**
输入 3 5
10  0 0 0  0 1 0
10  0 0 0  0 1 0
10  0 1 0  0 1 1
10  0 1 1  1 1 1
10  0 1 1  1 1 1 输出 10 2
1 3 10
3 4 10 **/

A - ACM Computer Factory - poj 3436(最大流)的更多相关文章

  1. A - ACM Computer Factory POJ - 3436 网络流

    A - ACM Computer Factory POJ - 3436 As you know, all the computers used for ACM contests must be ide ...

  2. ACM Computer Factory - poj 3436 (最大流)

      Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5949   Accepted: 2053   Special Judge ...

  3. (网络流)ACM Computer Factory --POJ --3436

    链接: http://poj.org/problem?id=3436 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=82835#probl ...

  4. ACM Computer Factory POJ - 3436 网络流拆点+路径还原

    http://poj.org/problem?id=3436 每台电脑有$p$个组成部分,有$n$个工厂加工电脑. 每个工厂对于进入工厂的半成品的每个组成部分都有要求,由$p$个数字描述,0代表这个部 ...

  5. POJ-3436:ACM Computer Factory (Dinic最大流)

    题目链接:http://poj.org/problem?id=3436 解题心得: 题目真的是超级复杂,但解出来就是一个网络流,建图稍显复杂.其实提炼出来就是一个工厂n个加工机器,每个机器有一个效率w ...

  6. POJ 3436 ACM Computer Factory (网络流,最大流)

    POJ 3436 ACM Computer Factory (网络流,最大流) Description As you know, all the computers used for ACM cont ...

  7. Poj 3436 ACM Computer Factory (最大流)

    题目链接: Poj 3436 ACM Computer Factory 题目描述: n个工厂,每个工厂能把电脑s态转化为d态,每个电脑有p个部件,问整个工厂系统在每个小时内最多能加工多少台电脑? 解题 ...

  8. POJ 3436:ACM Computer Factory 网络流

    ACM Computer Factory Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6247   Accepted: 2 ...

  9. poj3436 ACM Computer Factory, 最大流,输出路径

    POJ 3436 ACM Computer Factory 电脑公司生产电脑有N个机器.每一个机器单位时间产量为Qi. 电脑由P个部件组成,每一个机器工作时仅仅能把有某些部件的半成品电脑(或什么都没有 ...

随机推荐

  1. 500 OOPS: vsftpd: refusing to run with writable root inside chroot()解决方法

    vsftpd.conf配置文件如下: [root@rusky ~]# cat /etc/vsftpd/vsftpd.conf | grep -v "#" anonymous_ena ...

  2. BestCoder冠军赛 - 1005 Game 【DP】

    [题意] 给出一个set,set中有几个数. 现在给出n个人,环成一圈搞约瑟夫... 开始时从第1号报数,每次从set中随机选出一个数s,等报数到s后,报s的人出圈,其他人继续报数. 最后只剩1人时, ...

  3. css.day.05.eg

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  4. Swift - 30 - 可变参数

    //: Playground - noun: a place where people can play import UIKit // 可变参数一定要放在所有定义参数的最后面, 和其他参数的定义方式 ...

  5. MySQL 序列使用

    MySQL 序列使用 MySQL序列是一组整数:1, 2, 3, ...,由于一张数据表只能有一个字段自增主键, 如果你想实现其他字段也实现自动增加,就可以使用MySQL序列来实现. 本章我们将介绍如 ...

  6. 五、C# 类

    面向对象编程 类是面向对象编程的3个主要特征---封装.继承和多态性---的基础.   封装允许隐藏细节.   继承 继承关系至少涉及两个类,其中一个类(基类)是另一个类的更泛化的版本.   为了从一 ...

  7. 模拟vector

    实现了vector的模板,insert, erase, push_back, iterator #include<iostream> #include<string.h> #i ...

  8. [FindBugs分析记录]Class defines clone() but doesn't implement Cloneable

    官网解释: This class defines a clone() method but the class doesn't implement Cloneable. There are some ...

  9. FindBugs的Eclipse插件安装与使用

    1.FindBugs介绍 FindBugs是一款Java静态代码分析工具,与其他静态分析工具(如Checkstyle和PMD)不同,FindBugs 不注重样式或者格式,它专注于寻找真正的缺陷或者潜在 ...

  10. Eclipse中使用Maven创建Servlet3.0 Web 项目

    摘要 Apache Maven是一个优秀的项目构建和管理工具,许多开源项目都使用Maven进行构建.由于最近工作中要用到Maven,于是这里记录下在Eclipse中使用Maven插件创建一个基于Ser ...