论文信息

论文标题:Unsupervised Domain Adaptation for COVID-19 Information Service with Contrastive Adversarial Domain Mixup
论文作者:Huimin Zeng, Zhenrui Yue, Ziyi Kou, Lanyu Shang, Yang Zhang, Dong Wang
论文来源:aRxiv 2022
论文地址:download 
论文代码:download

1 Introduction

2 Problem Statement

  Regarding misinformation detection, we aim at training a model  $f$ , which takes an input text  $\boldsymbol{x}$  (a COVID-19 claim or a piece of news) to predict whether the information contained in  $\boldsymbol{x}$  is valid or not (i.e., a binary classification task). Moreover, in our domain adaptation problem, we use  $\mathcal{P}$  to denote source domain data distribution and  $\mathcal{Q}$  for the target domain data distribution. Each data point  ($\boldsymbol{x}$, $y$)  contains an input segment of COVID-19 claim or news  ($\boldsymbol{x}$)  and a label  $y \in\{0,1\}$  (  $y=1$  for true information and  $y=0$  for false information). To differentiate the notations of the data sampled from the source distribution $\mathcal{P}$ and the target distribution $\mathcal{Q}$ , we further introduce two definitions of the domain data:

    • Source domain: The subscript $s$ is used to denote the source domain data: $\mathcal{X}_{s}=\left\{\left(\boldsymbol{x}_{s}, y_{s}\right) \mid\left(\boldsymbol{x}_{s}, y_{s}\right) \sim \mathcal{P}\right\}$ .
    • Target domain: Similarly, the subscript t is used to denote the target domain data: $\mathcal{X}_{t}=\left\{\boldsymbol{x}_{t} \mid \boldsymbol{x}_{t} \sim \mathcal{P}\right\}$ . Note that in our unsupervised setting, the ground truth labels of target domain data $y_{t}$ are not used during training.

  Our goal is to adapt a classifier $f$ trained on $\mathcal{P}$ to $\mathcal{Q}$ . For a given target domain input $\boldsymbol{x}_{t}$ , a well-adapted model aims at making predictions as correctly as possible.

3 Method

  整体框架:

  

3.1 Domain Discriminator

  第一步是训练一个域鉴别器 $f_{D}$ 来分类输入数据是属于源域还是属于目标域。该域鉴别器与 COVID 模型共享相同的 BERT Encoder  $f_{e}$,并具有不同的二进制分类模块 $f_{D}$。域鉴别器以 BERT Encoder 中的标记 [CLS] 表示作为输入,以预测输入数据的域,如所示:

    $\hat{y}=f_{D}(\boldsymbol{z}) \quad\quad(1)$

  其中,$z$ 是 token [CLS] 的表示。

  对于 $f_{D}$ 的训练,明确地将源域数据的域标签 $y_{D}$ 定义为 $y_{D}=0$,将目标域数据的域标签定义为 $y_{D}=1$。因此,对域鉴别器的训练可以表述为:

    $\underset{f_{D}}{\text{min}} \;\; \mathbb{E}_{\left(\boldsymbol{x}, y_{D}\right) \sim \mathcal{X}^{\prime}}\left[l\left(f_{D}\left(f_{e}(\boldsymbol{x})\right), y_{D}\right)\right] \quad\quad(2)$

  其中,$\mathcal{X}^{\prime}$ 表示带有域标签的源域和目标域训练数据的合并数据集。

3.2 Adversarial Domain Mixup

  在训练了域鉴别器后,我们提出直接干扰来自源域和目标域的输入数据的潜在表示到域鉴别器的决策边界,如 Figure 1b 所示。为此,来自两个域的扰动表示(即域对抗表示)可以变得更接近,表明域间隙减小。在此,从两个域生成的域对抗性表示在模型的潜在特征空间中形成了一个平滑的中间域混合。在数学上,通过求解一个优化问题,可以找到干扰训练样本 $ \boldsymbol{x}$ 的潜在表示 $ \boldsymbol{z}$ 的最优扰动 $\delta^{*}$:

    $\begin{array}{r}\mathcal{A}\left(f_{e}, f_{D}, \boldsymbol{x}, y_{D}, \epsilon\right)=\underset{\boldsymbol{\delta}}{\text{max}}  \left[l\left(f_{D}(\boldsymbol{z}+\boldsymbol{\delta}), y_{D}\right)\right] \\\text { s.t. } \quad\|\boldsymbol{\delta}\| \leq \epsilon, \quad \boldsymbol{z}=f_{e}(\boldsymbol{x})\end{array}\quad\quad(3)$

  注意,在上面的方程中,我们引入了一个超参数 $\epsilon$ 来约束扰动 $\delta$ 的范数,从而避免了无穷大解。最后,将 $\text{Eq.3}$ 应用于合并训练集 $\mathcal{X}^{\prime}$ 中的所有训练样本,得到对抗域混合 $\mathcal{Z}^{\prime}$:

    $\begin{aligned}\mathcal{Z}^{\prime} & =\left\{\boldsymbol{z}^{\prime} \mid \boldsymbol{z}^{\prime}=\boldsymbol{z}+\mathcal{A}\left(f_{e}, f_{D}, \boldsymbol{x}, y_{D}, \epsilon\right),\left(\boldsymbol{x}, y_{D}\right) \in \mathcal{X}^{\prime}\right\} \\& :=\mathcal{Z}_{s}^{\prime} \cup \mathcal{Z}_{t}^{\prime}\end{aligned}\quad\quad(4)$

  其中,$\mathcal{Z}_{s}^{\prime}$ 是扰动的源特性,$\mathcal{Z}_{t}^{\prime}$ 是受干扰的目标特征。我们使用投影梯度下降(PGD)来近似 $\text{Eq.3}$ 的解,如在[7],[8]。

3.3 Contrastive Domain Adaptation

  接下来,受[6]的启发,我们提出了 $\mathcal{Z}_{a d v}$ 的双重对比自适应损失,以进一步将源数据域的知识适应到目标数据域。首先,我们减少了类内表示之间的域差异。也就是说,如果一个表示从源数据域的标签是真(或假)和一个表示从目标数据域的伪标签是真(或假),那么这两个表示被视为类内表示,我们减少域之间的差异。其次,如 Figure 1c 所示,真实信息和虚假信息的表示之间的差异将被扩大。

  为了计算我们提出的对比自适应损失,我们建议使用径向基函数(RBF)来度量标记类之间的差异。在[11]中,RBF 被证明是量化深度神经网络中不确定性的有效工具。由于我们的伪标记过程是为了自动过滤出目标域数据的低置信度标签,因此使用RBF来衡量标记类之间的差异可以有效地提高伪标签的质量,最终有助于模型的域适应。

  在形式上,使用 RBF 内核的定义:$k\left(z_{1}, z_{2}\right)=\exp \left[-\frac{\left\|\boldsymbol{z}_{1}-\boldsymbol{z}_{2}\right\|^{2}}{2 \sigma^{2}}\right]$

  我们定义了错误信息检测任务的类感知损失如下:

    $\begin{aligned}\mathcal{L}_{\text {con }}\left(\mathcal{Z}^{\prime}\right)  =&-\sum_{i=1}^{\left|\mathcal{Z}_{s}^{\prime}\right|} \sum_{j=1}^{\left|\mathcal{Z}_{t}^{\prime}\right|} \frac{\mathbb{1}\left(y_{s}^{(i)}=0, \hat{y}_{t}^{(j)}=0\right) k\left(\boldsymbol{z}_{s}^{(i)}, \boldsymbol{z}_{t}^{(j)}\right)}{\sum_{l=1}^{\left|\mathcal{Z}_{s}^{\prime}\right|} \sum_{m=1}^{\left|\mathcal{Z}_{t}^{\prime}\right|} \mathbb{1}\left(y_{s}^{(l)}=0, \hat{y}_{t}^{(m)}=0\right)} \\& -\sum_{i=1}^{\left|\mathcal{Z}_{s}^{\prime}\right|} \sum_{j=1}^{\left|\mathcal{Z}_{t}^{\prime}\right|} \frac{\mathbb{1}\left(y_{s}^{(i)}=1, \hat{y}_{t}^{(j)}=1\right) k\left(\boldsymbol{z}_{s}^{(i)}, \boldsymbol{z}_{t}^{(j)}\right)}{\sum_{l=1}^{\left|\mathcal{Z}_{s}^{\prime}\right|} \sum_{m=1}^{\left|\mathcal{Z}_{t}^{\prime}\right|} \mathbb{1}\left(y_{s}^{(l)}=1, \hat{y}_{t}^{(m)}=1\right)} \\& +\sum_{i=1}^{\left|\mathcal{Z}_{s}^{\prime}\right|} \sum_{j=1}^{\left|\mathcal{Z}_{s}^{\prime}\right|} \frac{\mathbb{1}\left(y_{s}^{(i)}=1, y_{s}^{(j)}=0\right) k\left(\boldsymbol{z}_{s}^{(i)}, \boldsymbol{z}_{s}^{(j)}\right)}{\sum_{l=1}^{\left|\mathcal{Z}_{s}^{\prime}\right|} \sum_{m=1}^{\left|\mathcal{Z}_{s}^{\prime}\right|} \mathbb{1}\left(y_{s}^{(l)}=1, y_{s}^{(m)}=0\right)} \\& +\sum_{i=1}^{\left|\mathcal{Z}_{t}^{\prime}\right|} \sum_{j=1}^{\left|\mathcal{Z}_{t}^{\prime}\right|} \frac{\mathbb{1}\left(\hat{y}_{t}^{(i)}=1, \hat{y}_{t}^{(j)}=0\right) k\left(\boldsymbol{z}_{t}^{(i)}, \boldsymbol{z}_{t}^{(j)}\right)}{\sum_{l=1}^{\left|\mathcal{Z}_{t}^{\prime}\right|} \sum_{m=1}^{\left|\mathcal{Z}_{t}^{\prime}\right|} \mathbb{1}\left(\hat{y}_{t}^{(l)}=1, \hat{y}_{t}^{(m)}=0\right)}\end{aligned}\quad\quad(5)$

  其中,$\hat{y}_{t}$ 为目标域样本的伪标签,$z$ 表示标记 CLS 的表示。

3.4 Overall Contrastive Adaptation Loss

  现在,我们将任务分类问题的交叉熵损失和上述对比自适应损失合并为 COVID 模型的单一优化目标:

    $\mathcal{L}_{\text {all }}=\mathcal{L}_{c e}(\boldsymbol{\mathcal { X }})+\lambda \mathcal{L}_{\text {con }}\left(\mathcal{Z}^{\prime}\right)   \quad\quad(6)$

  其中,$\mathcal{L}_{c e}$ 代表交叉熵损失函数。

4 Experiment

  在我们的实验中,我们使用了三个 source misinformation datasets :GossipCop , LIAR and PHEME,两个 COVID misinformation datasets:Constraint and ANTiVax。

  本文使用 DAAT 作为 Encoder ,之前的工作使用 RoBERTa,

  Results:

  

虚假新闻检测(CADM)《Unsupervised Domain Adaptation for COVID-19 Information Service with Contrastive Adversarial Domain Mixup》的更多相关文章

  1. Domain Adaptation (3)论文翻译

    Abstract The recent success of deep neural networks relies on massive amounts of labeled data. For a ...

  2. Unsupervised Domain Adaptation by Backpropagation

    目录 概 主要内容 代码 Ganin Y. and Lempitsky V. Unsupervised Domain Adaptation by Backpropagation. ICML 2015. ...

  3. Deep Transfer Network: Unsupervised Domain Adaptation

    转自:http://blog.csdn.net/mao_xiao_feng/article/details/54426101 一.Domain adaptation 在开始介绍之前,首先我们需要知道D ...

  4. 论文阅读 | A Curriculum Domain Adaptation Approach to the Semantic Segmentation of Urban Scenes

    paper链接:https://arxiv.org/pdf/1812.09953.pdf code链接:https://github.com/YangZhang4065/AdaptationSeg 摘 ...

  5. Domain Adaptation (1)选题讲解

    1 所选论文 论文题目: <Unsupervised Domain Adaptation with Residual Transfer Networks> 论文信息: NIPS2016, ...

  6. A Primer on Domain Adaptation Theory and Applications

    目录 概 主要内容 符号说明 Prior shift Covariate shift KMM Concept shift Subspace mapping Wasserstein distance 应 ...

  7. 关于模式识别中的domain generalization 和 domain adaptation

    今晚听了李文博士的报告"Domain Generalization and Adaptation using Low-Rank Examplar Classifiers",讲的很精 ...

  8. 【论文笔记】Domain Adaptation via Transfer Component Analysis

    论文题目:<Domain Adaptation via Transfer Component Analysis> 论文作者:Sinno Jialin Pan, Ivor W. Tsang, ...

  9. 域适应(Domain adaptation)

    定义 在迁移学习中, 当源域和目标的数据分布不同 ,但两个任务相同时,这种 特殊 的迁移学习 叫做域适应 (Domain Adaptation). Domain adaptation有哪些实现手段呢? ...

  10. Domain Adaptation论文笔记

    领域自适应问题一般有两个域,一个是源域,一个是目标域,领域自适应可利用来自源域的带标签的数据(源域中有大量带标签的数据)来帮助学习目标域中的网络参数(目标域中很少甚至没有带标签的数据).领域自适应如今 ...

随机推荐

  1. POJ3260 The Fewest Coins(混合背包)

    支付对应的是多重背包问题,找零对应完全背包问题. 难点在于找上限T+maxv*maxv,可以用鸽笼原理证明,实在想不到就开一个尽量大的数组. 1 #include <map> 2 #inc ...

  2. 洛谷P2517 HAOI2010 订货 (费用流)

    标准的费用流问题,关键在于巧妙地建模 一共有n个月份,源点设为0,汇点设为n+1 1.源点向所有月份连边,容量为正无穷,费用为该月进货的费用 2.每个月向下一个月连边,容量为仓库容量,费用为存货费用 ...

  3. 绝杀processOn,这款UML画图神器,阿里字节都用疯了,你还不知道?

    大家好,我是陶朱公Boy,又和大家见面了. 前言 在文章开始前,想先问大家一个问题,大家平时在项目需求评审完后,是直接开始编码了呢?还是会先写详细设计文档,后再开始进行编码开发? ☆现实 这个时候可能 ...

  4. 【题解】CF1720C

    题意简述 给你一个 01 矩阵,每一次你可以在这个矩阵中找到一个 \(L\) 型,将它全部变成 0.\(L\) 型的定义是在一个 \(2\times2\) 矩阵中,除开一个角之外的图形,其中必须包含至 ...

  5. 齐博x1换服务器如何转移网站?

    如果你要把网站从本机传到服务器,又或者要更换服务器,请按下面的操作处理 第一步,必须要在原网站后台备份数据. 第二步,把备份好的网站所有文件,传到新服务器或空间 特别要注意 \cache\ 目录下建议 ...

  6. LcdToos设置“自动播放”和“上电自动开机”的作用

    "自动播放"功能,常用于屏演示或者老化功能,使能后,按开关点亮屏,PX01会自动按"画面定制"栏中进行自动顺序播放:开启方法如下: 打开相应的点屏工程,在&qu ...

  7. 配置jmeter环境变量

    好记性不如烂笔头. 本文采用jmeter5.4.1版本.  1. Linux系统 1.1 将jmeter上传到安装目录并解压 jmeter5.4.1链接: https://pan.baidu.com/ ...

  8. 重新整理 .net core 实践篇 ———— dotnet-dump [外篇]

    前言 本文的上一篇为: https://www.cnblogs.com/aoximin/p/16861797.html 该文为dotnet-dump 和 procdump 的实战介绍一下. 正文 现在 ...

  9. onps栈使用说明(2)——ping、域名解析等网络工具测试

    1. ping测试 协议栈提供ping工具,其头文件为"net_tools/ping.h",将其include进你的目标系统中即可使用这个工具. -- #include " ...

  10. 优秀的Kafka GUI客户端、可视化管理工具、监控工具

    想要查看Topic里的消息却找不到软件,想要查看或更新Broker.Topic配置,想要监控Broker服务器状态?试试下面的Kafka GUI工具--Kafka Assistant 官网地址:htt ...