西瓜书3.4 解题报告(python 多分类学习 十折交叉法)
偷懒找了UCI上最小的一个数据集,数据大约是集装箱起重机的转动速度、角度,判断其力量大小(我不懂起重机啊啊啊)
虽然不懂但并不妨碍写代码分类,显然标记就是力量,分为0.3、0.5、0.7三种。具体的模型学习还是使用对率回归,那么数据集如下。
x=np.array([[1,2,6,7,10,8,3,1,6,7,8,9,9,2,6],[-5,5,-2,2,-2,2,-2,2,-5,5,-5,5,0,0,0],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]])
y=np.array([0.3,0.3,0.3,0.3,0.3,0.3,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.7,0.7])
因为是多分类问题所以我们要建立多个分类器,这次使用OvR的方法,建立三个分类器也就是要计算出三组参数的值:
b=np.array([[0],[0],[1]])
b1=np.array([[0],[0],[1]])
b2=np.array([[0],[0],[1]])
b3=np.array([[0],[0],[1]])
b是用于计算的时候暂存参数。既然是十折交叉法,那我们每次就取两个样本作为测试集,为了方便计算,每次的训练集我们赋值到另外两个矩阵上,先在全局初始化它们:
x1=np.zeros(shape=(3,13))
y1=np.arange(0,13)
注意这里的y1不能用zeros初始化,否则编译器认为这个y1的shape是(0,13),会报错,非常要命(躺)。
求参数的主体函数基本不用动,稍微改下参数名以防重复即可:
def fd():
b11 = 0
for i in range(13):
k=np.exp(np.dot(b.T,np.array([x1[:,i]]).T))
b11=b11-np.array([x1[:,i]])*( y1[i]-(k/(1+k)))
return b11 def sd():
b22 = 0
for i in range(13):
k = np.exp(np.dot(b.T,np.array([x1[:,i]]).T))
b22=b22+np.dot(np.array([x1[:,i]]).T,np.array([x1[:,i]])) * (k/(1+k)) * (1-(k/(1+k)))
return b22 def form():
mae=0
ima=0
b = np.array([[0], [0], [1]])
while(1):
ima=0
for i in range(13):
k=np.dot(b.T,np.array([x1[:,i]]).T)
ima=ima+(-y1[i]*k+np.log(1+np.exp(k)))
if(np.abs(ima-mae)<=0.0001):
break
mae=ima
b11=fd()
b22=sd()
b=b-np.dot(linalg.inv(b22),b11.T)
return b
然后每次OvR我们要对y1进行重新赋值,将值按要求修改为1和0:
def sety(tru):
for k in range(13):
if (y1[k] == tru):
y1[k] = 1
else:
y1[k] = 0
return
tru就是该分类器应当分类为真值的y的原值。
而后为了判断每个分类器的正确率,需要另写一个函数,这里写的这个函数只判断对于单个样本(在全集中的序列号为i)的正误,显然的,
只要应当判断其为1的分类器出错就可以直接确定其出错,虽然这种操作还是有一定风险的(如果其他分类器也判断该例为正该怎么算),
但偷懒就这么写了。
def judg(i):
s0=0.0
if (y[i] == 0.3):
z = np.exp(np.dot(b1.T, np.array([x[:, i]]).T))
elif (y[i] == 0.5):
z = np.exp(np.dot(b2.T, np.array([x[:, i]]).T))
else:
z = np.exp(np.dot(b3.T, np.array([x[:, i]]).T))
if (z > 0):
z=1
else:
z=0
return z
然后就是每次抽取训练集的函数,也就是从x、y中删掉指定两列之后赋值给x1、y1的函数:
def delex(i,j):
k=0
for f in range(15):
if(f!=i and f!=j):
x1[:,k]=x[:,f]
k=k+1
return def deley(i,j):
k = 0
for f in range(y.size):
if (f != i and f != j):
y1[k] = y[f]
k = k + 1
return
主函数如下:
s=0.0
for i in range(15):
for j in range(i+1,15):
s0=0.0
delex(i,j)
deley(i,j)
sety(0.3)
b1=form()
deley(i,j)
sety(0.5)
b2=form()
deley(i,j)
sety(0.7)
b3=form()
s=s+(judg(i)+judg(j))/2
print('第',i,'个与第',j,'个作为测试集时的正确率暂时总和为',s)
s=s/105
print('正确率为:',s)
运行结果:
第 0 个与第 1 个作为测试集时的正确率暂时总和为 1.0...(略)
第 13 个与第 14 个作为测试集时的正确率暂时总和为 105.0
正确率为: 1.0
留一法同理,修改一下参数数量和一些数字就行,编译器作怪的话可以加一些跳出条件。
补充另一个数据集的读取文件然后进行计算的代码,虽然没有error但是跑了一顿午饭也没跑出什么结果,卡无限循环了,改了个条件终于跑出结果,姑且摆在这里看看。
import numpy as np
from numpy import linalg
import math
import scipy x=np.ones(shape=(14,178))
y=np.arange(0,178)
x1=np.ones(shape=(14,176))
y1=np.arange(0,176)
b=np.array([[0],[0],[0],[0],[0],[0],[0],[0],[0],[0],[0],[0],[0],[1]])
b1=np.array([[0],[0],[0],[0],[0],[0],[0],[0],[0],[0],[0],[0],[0],[1]])
b2=np.array([[0],[0],[0],[0],[0],[0],[0],[0],[0],[0],[0],[0],[0],[1]])
b3=np.array([[0],[0],[0],[0],[0],[0],[0],[0],[0],[0],[0],[0],[0],[1]]) def readdata():
k=0
file=open('C:\\Users\\33298\\Desktop\\data\\2\\winedata.txt','r')
for line in file.readlines():
clas,alcohol,malic,ash,alcalin,magne,t_phenols,flava,nonfla,proantho,color,hue,od,proli=line.split(',')
#print(clas,alcohol,malic,ash,alcalin,magne,t_phenols,flava,nonfla,proantho,color,hue,od,proli)
x[:,k]=np.array([alcohol,malic,ash,alcalin,magne,t_phenols,flava,nonfla,proantho,color,hue,od,proli,1]).T
y[k]=clas
k=k+1
return def fd():
b11 = 0
for i in range(176):
k = np.exp(np.dot(b.T, np.array([x1[:, i]]).T))
b11 = b11 - np.array([x1[:, i]]) * (y1[i] - (k / (1 + k)))
return b11 def sd():
b22 = 0
for i in range(176):
k = np.exp(np.dot(b.T, np.array([x1[:, i]]).T))
b22 = b22 + np.dot(np.array([x1[:, i]]).T, np.array([x1[:, i]])) * (k / (1 + k)) * (1 - (k / (1 + k)))
return b22 def form():
mae = 0
ima = 0
b=np.array([[0],[0],[0],[0],[0],[0],[0],[0],[0],[0],[0],[0],[0],[1]])
num=10
while (num):
ima = 0
for i in range(176):
k = np.dot(b.T, np.array([x1[:, i]]).T)
if(k>1):
ima=ima+np.log(1+np.exp(-k))
else:
ima = ima + (-y1[i] * k + np.log(1 + np.exp(k)))
if (np.abs(ima - mae) <= 0.000001):
break
mae = ima
b11 = fd()
b22 = sd()
b = b - np.dot(linalg.inv(b22), b11.T)
num-=1
return b def sety(tru):
for k in range(13):
if (y1[k] == tru):
y1[k] = 1
else:
y1[k] = 0
return def judg(i):
s0 = 0.0
if (y[i] == 1):
z = np.exp(np.dot(b1.T, np.array([x[:, i]]).T))
elif (y[i] == 2):
z = np.exp(np.dot(b2.T, np.array([x[:, i]]).T))
else:
z = np.exp(np.dot(b3.T, np.array([x[:, i]]).T))
if (z > 0):
z = 1
else:
z = 0
return z def delex(i, j):
k = 0
for f in range(178):
if (f != i and f != j):
x1[:, k] = x[:, f]
k = k + 1
return def deley(i, j):
k = 0
for f in range(y.size):
if (f != i and f != j):
y1[k] = y[f]
k = k + 1
return readdata()
s = 0.0
for i in range(178):
for j in range(i + 1, 178):
s0 = 0.0
delex(i, j)
deley(i, j)
sety(1)
b1 = form()
deley(i, j)
sety(2)
b2 = form()
deley(i, j)
sety(3)
b3 = form()
s = s + (judg(i) + judg(j)) / 2
print('第', i, '个与第', j, '个作为测试集时的正确率暂时总和为', s)
s = s / 15753
print('正确率为:', s)
西瓜书3.4 解题报告(python 多分类学习 十折交叉法)的更多相关文章
- 【LeetCode】面试题62. 圆圈中最后剩下的数字 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 约瑟夫环 日期 题目地址:https://leetco ...
- 【LeetCode】107. Binary Tree Level Order Traversal II 解题报告 (Python&C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 方法一:DFS 方法二:迭代 日期 [LeetCode ...
- 【LeetCode】206. Reverse Linked List 解题报告(Python&C++&java)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 迭代 递归 日期 [LeetCode] 题目地址:h ...
- 【LeetCode】26. Remove Duplicates from Sorted Array 解题报告(Python&C++&Java)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 双指针 日期 [LeetCode] https:// ...
- 【LeetCode】1019. Next Greater Node In Linked List 解题报告 (Python&C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 单调递减栈 日期 题目地址:https://leetc ...
- 【剑指Offer】05. 替换空格 解题报告 (Python & C++ & Java)
作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 个人微信公众号:负雪明烛 目录 题目描述 解题方法 方法一:新建可变长度的容器 方法二:原 ...
- 【LeetCode】94. Binary Tree Inorder Traversal 解题报告(Python&C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 解题方法 递归 迭代 日期 题目地址:https://leetcode.c ...
- 【LeetCode】654. Maximum Binary Tree 解题报告 (Python&C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 递归 日期 题目地址:https://leetcode ...
- 【LeetCode】784. Letter Case Permutation 解题报告 (Python&C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 回溯法 循环 日期 题目地址:https://leet ...
- 【LeetCode】341. Flatten Nested List Iterator 解题报告(Python&C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 递归+队列 栈 日期 题目地址:https://lee ...
随机推荐
- django 关联类 DoesNotExist: User matching query does not exist.
问题就是 关联类为空找不到 在或者geattr / hasattr / obj. item 会抛出异常 无法通过判断处理 捕获异常 try: tmp_data['demand_dept_name'] ...
- react的react-devtools 工具
步骤1: 访问react-devtools工具网址: https://gitcode.net/mirrors/facebook/react-devtools?utm_source=csdn_githu ...
- dart的基本使用
1.windows上环境搭建 (1) 在dart官网上下载对应的sdk安装即可.归档 | Dart (2) 使用vscode开发,安装dart插件和Code Runner插件即可. 2.Dart ...
- [转]idea 试用30天“无限续费”idea破解
首先打开idea设置 左上角点击file-->setting-->Plugins https://plugins.zhile.io 然后点击 确定 ("OK") 点 ...
- geoserver的自动化部署
年后接到一个任务,需求是这样的: 搭建一个geoserver服务器,将公司内部的mbtile数据(EPSG:3857)发布出去 服务的输出格式为MBTiles with vector tiles的矢量 ...
- C#消息泵探索(二)
引言: 上篇文章里简单的解释了C#的消息泵原理,这里我们以winform为例详细地了解一下实现代码. 底层实现 [DllImport(ExternDll.User32, ExactSpelling ...
- html的table多级表头表格的代码
1,两级表头的代码 <html> <head> <title>多层表头</title> <link rel="stylesheet&qu ...
- Excel 的盒须图 离群值 Outliers
Excel 中的盒须图 翻译自https://www.excel-easy.com/examples/box-whisker-plot.html 本示例教您如何在Excel中创建盒须图.盒须图显示了数 ...
- wpf treeview 选中节点加载数据并绑定
<TreeView Grid.Row="0" Grid.Column="0" x:Name="FolderView" Canvas.T ...
- JSP课设:学生选课系统(附源码+调试)
JSP学生选课管理系统学生选课管理系统功能概述(1)登录模块分为两种角色:学生角色.教师角色 (2)教师模块:选课管理功能为对课程信息(课程编号.名称.学分)进行添加.修改.删除操作:学生信息功能对学 ...