sklearn数据集的导入及划分
鸢尾花数据集的导入及查看:
①鸢尾花数据集的导入:
from sklearn.datasets import load_iris
②查看鸢尾花数据集:
iris=load_iris()
print("鸢尾花数据集:\n",iris)
print("查看数据集描述:\n", iris.DESCR)
print("查看特征值的名字:\n",iris.feature_names)
print("查看特征数据:\n",iris.data,iris.data.shape)
print("查看目标值名字:\n",iris.target_names)
print("查看目标数据:\n",iris.target)
划分数据集:
①导入train_test_split包:
from sklearn.model_selection import train_test_split
②划分数据集:数据集划分为训练集和测试集
x_train,x_test,y_train,y_test=train_test_split(iris.data,iris.target,test_size=0.2)
注:iris.data为数据集的特征值,iris.target为数据集的目标值,test_size为测试值的划分比例(可省,默认为0.25),
x_train:训练集的特征值
x_test:测试集的特征值
y_train:训练集的目标值
y_test:测试集的特征值
完整代码:
from sklearn.datasets import load_iris #导入数据集
from sklearn.model_selection import train_test_split def datatest():
# 获取数据集
iris=load_iris()
print("鸢尾花数据集:\n",iris)
print("查看数据集描述:\n", iris.DESCR)
print("查看特征值的名字:\n",iris.feature_names)
print("查看特征数据:\n",iris.data,iris.data.shape)
print("查看目标值名字:\n",iris.target_names)
print("查看目标数据:\n",iris.target) # 划分数据集
x_train,x_test,y_train,y_test=train_test_split(iris.data,iris.target,test_size=0.2)
print(x_train,x_train.shape)
print(x_test,x_test.shape)
print(y_train,y_train.shape)
print(y_test,y_test.shape)
if __name__ == '__main__':
datatest()
sklearn数据集的导入及划分的更多相关文章
- sklearn数据集划分
sklearn数据集划分方法有如下方法: KFold,GroupKFold,StratifiedKFold,LeaveOneGroupOut,LeavePGroupsOut,LeaveOneOut,L ...
- 【学习笔记】sklearn数据集与估计器
数据集划分 机器学习一般的数据集会划分为两个部分: 训练数据:用于训练,构建模型 测试数据:在模型检验时使用,用于评估模型是否有效 训练数据和测试数据常用的比例一般为:70%: 30%, 80%: 2 ...
- 机器学习笔记(四)--sklearn数据集
sklearn数据集 (一)机器学习的一般数据集会划分为两个部分 训练数据:用于训练,构建模型. 测试数据:在模型检验时使用,用于评估模型是否有效. 划分数据的API:sklearn.model_se ...
- sklearn数据集
数据集划分: 机器学习一般的数据集会划分为两个部分 训练数据: 用于训练,构建模型 测试数据: 在模型检验时使用,用于评估模型是否有效 sklearn数据集划分API: 代码示例文末! scikit- ...
- Sklearn数据集与机器学习
sklearn数据集与机器学习组成 机器学习组成:模型.策略.优化 <统计机器学习>中指出:机器学习=模型+策略+算法.其实机器学习可以表示为:Learning= Representati ...
- 13_数据的划分和介绍之sklearn数据集
1.数据集是如何划分?训练数据和评估数据不能使用相同数据,不然自己测自己,会使得准确率虚高,在遇到陌生数据时,不够准确. 2.数据集的获取: 通过load或者fetch方法. 3.数据集进行分割: 训 ...
- sklearn——数据集调用及应用
忙了许久,总算是又想起这边还没写完呢. 那今天就写写sklearn库的一部分简单内容吧,包括数据集调用,聚类,轮廓系数等等. 自带数据集API 数据集函数 中文翻译 任务类型 数据规模 load_ ...
- SKLearn数据集API(一)
注:本文是人工智能研究网的学习笔记 数据集一览 类型 获取方式 自带的小数据集 sklearn.datasets.load_ 在线下载的数据集 sklearn.datasets.fetch_ 计算机生 ...
- SKLearn数据集API(二)
注:本文是人工智能研究网的学习笔记 计算机生成的数据集 用于分类任务和聚类任务,这些函数产生样本特征向量矩阵以及对应的类别标签集合. 数据集 简介 make_blobs 多类单标签数据集,为每个类分配 ...
随机推荐
- 深入理解ES6之《块级作用域绑定》
众所周知,js中的var声明存在变量提升机制,因此ESMAScript 6引用了块级作用域来强化对变量生命周期的控制let const 声明不会被提升,有几个需要注意的点1.不能被重复声明 假设作用域 ...
- github 上有趣又实用的前端项目(持续更新,欢迎补充)
github 上有趣又实用的前端项目(持续更新,欢迎补充) 1. reveal.js: 幻灯片展示框架 一个专门用来做 HTML 幻灯片的框架,支持 HTML 和 Markdown 语法. githu ...
- python-计算素数和
本题要求计算输入两个正整数x,y(x<=y,包括x,y)素数和.函数isPrime用以判断一个数是否素数,primeSum函数返回素数和. 输入格式: 输入两个整数. 输出格式: [m-n]间的 ...
- 基于node实现一个简单的脚手架工具(node控制台交互项目)
实现控制台输入输出 实现文件读写操作 全原生实现一个简单的脚手架工具 实现vue-cli2源码 一.实现控制台输入输出 关于控制台的输入输出依然是基于node进程管理对象process,在proces ...
- JavaScript 字符串(String)对象的方法
anchor() 描述:用于创建 HTML 锚 原型:stringObject.anchor(anchorname) 用法: <script> var txt="Hello wo ...
- Java实现单链表的逆序打印
思路1:可以将链表进行反转,然后进行数据的输出即可,单链表反转地址如下https://blog.csdn.net/Kevinnsm/article/details/113763272 这个思路1肯定有 ...
- 领域驱动模型DDD(二)——领域事件的订阅/发布实践
前言 凭良心来说,<微服务架构设计模式>此书什么都好,就是选用的业务过于庞大而导致代码连贯性太差,我作为读者来说对于其中采用的自研框架看起来味同嚼蜡,需要花费的学习成本实在是过于庞大,不仅 ...
- Mybatis结果集映射问题
之前的数据库图简单都是纯小写格式,这一次做项目为了显得正规一些,模拟实际的情况,采用了驼峰命名的规则,这时候就遇到了结果匹配的问题. 之前只要 <select id="select&q ...
- Java第十五周作业
Cola公司的雇员分为以下若干类:(知识点:多态) [必做题]• 4.1 ColaEmployee :这是所有员工总的父类,属性:员工的姓名,员工的生日月份.方法:getSalary(int mont ...
- MQTT物联网通讯协议入门
目录 一.MQTT协议概念 发布/订阅机制 MQTT客户端 Broker代理(服务器) MQTT消息结构 二.MQTT协议实现原理 MQTT连接 MQTT消息发布 MQTT订阅机制 MQTT订阅确认 ...