108_Power Pivot购物篮分析分组GENERATE之笛卡尔积、排列、组合
博客:www.jiaopengzi.com
1、背景
昨天在看论坛帖子时候(帖子),看到一个关于SKU组合的问题,有很多M大佬都给出了处理方案,于是想用dax也写一个。
注:
原贴有dax的写法,这里主要说明下GENERATE之笛卡尔积、排列、组合处理过程。
上效果图

2、问题
1、大前提是使我们要使用data的数据做购物篮分析分组;
2、在问题1已的基础上,笛卡尔积表(5*5)存在类似黄色区域问题,SKU两两相同,这是不需要看到的;
3、在问题1的基础上,排列表(见图中公式)存在类似绿色区域的问题,SKU1对SKU2和SKU2对SKU1其实是一样的,这也是我们不需要看到的;
4、基于以上,我们通过笛卡尔积-排列-组合这样 处理下来得到我们要的购物篮分组。
3、上DAX
1、笛卡尔积

DEFINE
VAR T1 =
SELECTCOLUMNS ( data, "SKUA", data[SKU] )
VAR T2 =
SELECTCOLUMNS ( data, "SKUB", data[SKU] )
VAR T3 =
GENERATE ( T1, T2 )
EVALUATE
T3
ORDER BY
[SKUA],
[SKUB] ASC
2、排列

DEFINE
VAR T1 =
SELECTCOLUMNS ( data, "SKUA", data[SKU] )
VAR T2 =
SELECTCOLUMNS ( data, "SKUB", data[SKU] )
VAR T3 =
GENERATE ( T1, T2 )
VAR T4 =
FILTER ( T3, [SKUA] <> [SKUB] )
EVALUATE
T4
ORDER BY
[SKUA],
[SKUB] ASC
4、组合

DEFINE
VAR T1 =
SELECTCOLUMNS ( data, "SKUA", data[SKU] )
VAR T2 =
SELECTCOLUMNS ( data, "SKUB", data[SKU] )
VAR T3 =
GENERATE ( T1, T2 )
VAR T4 =
FILTER ( T3, [SKUA] <> [SKUB] )
VAR T5 =
DISTINCT (
SELECTCOLUMNS (
ADDCOLUMNS (
T4,
"AB", IF ( [SKUA] < [SKUB], [SKUA] & [SKUB], [SKUB] & [SKUA] )
),
"AB", [AB]
)
)
VAR T6 =
FILTER ( ADDCOLUMNS ( T4, "AB", [SKUA] & [SKUB] ), [AB] IN T5 )
VAR T7 =
SUMMARIZE ( T6, [SKUA], [SKUB] )
EVALUATE
T7
ORDER BY
[SKUA],
[SKUB] ASC
4、总结
1、以上问题基于购物篮分析产生,所以需要组合结果;
2、在实际需求中肯定这三种都是有需求的;
3、处理GENERATE,两列名称不能相同,于是有了上述的GENERATE ( T1, T2 ),而不是GENERATE ( T1, T1);
4、处理从排列到组合的思路主要是利用两两组合排序后去重即可,分步体会从T1-T7的过程。
by 焦棚子
108_Power Pivot购物篮分析分组GENERATE之笛卡尔积、排列、组合的更多相关文章
- 数据算法 --hadoop/spark数据处理技巧 --(5.移动平均 6. 数据挖掘之购物篮分析MBA)
五.移动平均 多个连续周期的时间序列数据平均值(按相同时间间隔得到的观察值,如每小时一次或每天一次)称为移动平均.之所以称之为移动,是因为随着新的时间序列数据的到来,要不断重新计算这个平均值,由于会删 ...
- Apriori算法在购物篮分析中的运用
购物篮分析是一个很经典的数据挖掘案例,运用到了Apriori算法.下面从网上下载的一超市某月份的数据库,利用Apriori算法进行管理分析.例子使用Python+MongoDB 处理过程1 数据建模( ...
- R语言和数据分析十大:购物篮分析
提到数据挖掘,我们的第一个反应是之前的啤酒和尿布的故事听说过,这个故事是一个典型的数据挖掘关联规则.篮分析的传统线性回归之间的主要差别的差别,对于离散数据的相关性分析: 常见的关联规则: 关联规则:牛 ...
- 数据挖掘算法之-关联规则挖掘(Association Rule)(购物篮分析)
在各种数据挖掘算法中,关联规则挖掘算是比較重要的一种,尤其是受购物篮分析的影响,关联规则被应用到非常多实际业务中,本文对关联规则挖掘做一个小的总结. 首先,和聚类算法一样,关联规则挖掘属于无监督学习方 ...
- 关联规则之Aprior算法(购物篮分析)
0.支持度与置信度 <mahout实战>与<机器学习实战>一起该买的记录数占所有商品记录总数的比例——支持度(整体) 买了<mahout实战>与<机器学习实战 ...
- 016 Spark中关于购物篮的设计,以及优化(两个点)
一:介绍 1.购物篮的定义 2.适用场景 3.相关概念 4.步骤 5.编程实现 6.步骤 二:程序 1.程序 package com.ibeifeng.senior.mba.association i ...
- 购物篮模型&Apriori算法
一.频繁项集 若I是一个项集,I的支持度指包含I的购物篮数目,若I的支持度>=S,则称I是频繁项集.其中,S是支持度阈值. 1.应用 "尿布和啤酒" 关联概念:寻找多篇文章中 ...
- 购物篮算法的理解-基于R的应用
是无监督机器学习方法,用于知识发现,而非预测,无需事先对训练数据进行打标签,因为无监督学习没有训练这个步骤.缺点是很难对关联规则学习器进行模型评估,一般都可以通过肉眼观测结果是否合理. 一,概念术语 ...
- SQL语句汇总(三)——聚合函数、分组、子查询及组合查询
聚合函数: SQL中提供的聚合函数可以用来统计.求和.求最值等等. 分类: –COUNT:统计行数量 –SUM:获取单个列的合计值 –AVG:计算某个列的平均值 –MAX:计算列的最大值 –MIN:计 ...
随机推荐
- carsim2016 与 MATLAB2018 联合仿真send to simulink后编译不成功解决方法
之前使用CarSim8.1和Matlab17b联合仿真时遇到的问题和现在换用Carsim2017之后遇到了不一样的问题.carsim2017界面选择send to simulink 按钮之后,点击运行 ...
- Linux套接子(c语言)模拟http请求、应答
有关套接子和http请求报文的博客在CSDN有很多比如,点这里查看,这里我就不再做过多赘述了,下面我们直接实战,模拟http请求. 要求:浏览器访问本地的localhost,在浏览器页面打印出 Hel ...
- 5_系统的可控性_Controllability
- PCB中的生产工艺、USB布线、特殊部件、蓝牙天线设计
PCB中的生产工艺.USB布线.特殊部件.蓝牙天线设计 (2016-07-20 11:43:27) 转载▼ PCB生产中Mark点设计 1.pcb必须在板长边对角线上有一对应整板定位的Mark ...
- flex布局中父容器属性部分演示效果
如图可见flex的属性分为父容器和子容器的属性共12个.关于这些属性具体代表什么意思,网上有很多教程的文章,自觉不能写得比别人更好,所以这里主要写了一些例子关于父容器属性效果的演示,希望可以帮助大家理 ...
- 给新手的最简单electron使用教程
我花了两个月闲暇翻译完了文档,大概是目前最完整最实时的中文文档了,有需要可以去看看学学:github传送门,大多数的需求阅读文档即可解决,实际上,翻译文档正是我入门一项未知事物时的最简单常用的法子. ...
- 适配手机端rpx像素
<script src="static/js/adaptive.js"></script> <script type="text/javas ...
- C语言,最大公约数---更相减损术
// 最大公约数 更相减损法 int commonDivisor() { int i,k,n=0; printf("请输入两个不同的正整数,用,隔开\n"); scanf(&quo ...
- c++对于c的扩展_冒号作用域
冒号作用域 ::(该运算符为作用域):如果::前面什么都没加代表全局作用域 #include <iostream> using namespace stu; int a=10; viod ...
- Servlet学习记录
个人认为servlet属于一种控制程序,可以处理浏览器的请求并做出对应的回应.我们经常使用的是让一个类去继承HttpServlet,然后在doget或者dopost里面写东西. 目前我个人常在doge ...