题目

算是诈骗题?

令一开始就存在的颜色数为cnt。k>=cnt的情况,显然每次找一个出现不止一次的颜色,然后把这个颜色的恰好一个方块替换成一种没有出现过的颜色就可以了,\(k-cnt\)次解决问题。先把这种特判掉。

然后再把k=1的情况也判掉,不然后面不好弄。

否则的话可以说明:最多需要2次操作。只要证明2次一定可以解决问题就可以了。

证明:

先找到最大的L,满足把整个网格左上角边长为L的正方形全染成\(a_{1,1}\)(下标从1开始)的颜色后,剩下的不同颜色数\(\geq k\)。如果这步操作做完后刚好有k种颜色,就直接完事了;否则,L不能继续增加是因为这个边长为L的正方形右边和下面的第一列如果也被覆盖,剩下颜色数会<k。我们第二次操作用一个右下角在\((L+1,L+1)\)的正方形,把区域内染成\(a_{1,1}\)的颜色。大小从1开始逐渐扩大,每次扩大都会使不同颜色数减少0或1或2。那么在第一次减少到\(\leq k\)时,只能是k或k-1。如果是k就完事,否则可以把这个正方形的颜色改成一种没有出现过的。如果第一次减少到\(\leq k\)时,边长已经达到\(L+1\)且是k-1,那么把第一次操作的正方形边长改成L+1,第二次再在第一次的正方形内部随便操作一次即可。

剩下就是判断是否能一次搞定了。先枚举操作的正方形的边长l,然后尝试算出每一个边长为l的正方形内部完整地覆盖了几种颜色。对于每种颜色,求出它出现的最上、最下、最左、最右的位置,则能完整覆盖这种颜色的边长为l的正方形的左上顶点在一个矩形内部,用差分做一个矩形加即可。

时间复杂度\(O(n^3)\)。

点击查看代码
#include <bits/stdc++.h>

#define rep(i,n) for(int i=0;i<n;++i)
#define repn(i,n) for(int i=1;i<=n;++i)
#define LL long long
#define pii pair <int,int>
#define pb push_back
#define fi first
#define se second
#define mpr make_pair using namespace std; int n,k,a[510][510],mnr[250010],mxr[250010],mnc[250010],mxc[250010],sum[510][510];
map <int,int> mp; int main()
{
rep(i,250005) mnr[i]=mnc[i]=1e9,mxr[i]=mxc[i]=-1e9;
cin>>n>>k;
rep(i,n) rep(j,n)
{
scanf("%d",&a[i][j]),mp[a[i][j]]=1;
mnr[a[i][j]]=min(mnr[a[i][j]],i);mxr[a[i][j]]=max(mxr[a[i][j]],i);
mnc[a[i][j]]=min(mnc[a[i][j]],j);mxc[a[i][j]]=max(mxc[a[i][j]],j);
}
if(k==1)
{
if(mp.size()==1) puts("0");
else puts("1");
return 0;
}
if(k>=mp.size())
{
cout<<k-mp.size()<<endl;
return 0;
}
repn(i,n-1)
{
rep(j,n+3) rep(p,n+3) sum[j][p]=0;
repn(j,n*n) if(mnr[j]<1e9)
{
pii most=mpr(mnr[j],mnc[j]),least=mpr(mxr[j]-i+1,mxc[j]-i+1);
least.fi=max(least.fi,0);least.se=max(least.se,0);
if(most.fi<least.fi||most.se<least.se) continue;
++sum[least.fi][least.se];++sum[most.fi+1][most.se+1];
--sum[most.fi+1][least.se];--sum[least.fi][most.se+1];
}
rep(j,n) rep(p,n) sum[j][p+1]+=sum[j][p];
rep(j,n) rep(p,n) sum[j+1][p]+=sum[j][p];
rep(j,n-i+1) rep(p,n-i+1)
{
int lft=mp.size()-sum[j][p];
if(lft==k-1||lft==k)
{
puts("1");
return 0;
}
}
}
puts("2");
return 0;
}

[题解] Codeforces 1720 E Misha and Paintings 结论的更多相关文章

  1. [题解] Codeforces 1268 D Invertation in Tournament 结论,兰道定理

    题目 本题需要用到的结论: 一.兰道定理 二.如果\(n\geq4\),那么\(n\)个点的强连通竞赛图存在\(n-1\)个点的强连通子图. 证明: 现在有一个n-1个点的竞赛图(不一定强连通,称其为 ...

  2. Codeforces 577B Modulo Sum:数学 结论【选数之和为m的倍数】

    题目链接:http://codeforces.com/problemset/problem/448/C 题意: 给你n个数字,给定m. 问你是否能从中选出若干个数字,使得这些数字之和为m的倍数. 题解 ...

  3. 【CodeForces - 501B 】Misha and Changing Handles(map)

    Misha and Changing Handles CodeForces原题是英文,这里就直接上中文好了,翻译不是太给力,但是不影响做题 ^▽^ Description  神秘的三角洲里还有一个传说 ...

  4. 【codeforces 501D】Misha and Permutations Summation

    [题目链接]:http://codeforces.com/problemset/problem/501/D [题意] 给你两个排列; 求出它们的字典序num1和num2; 然后让你求出第(num1+n ...

  5. [题解][Codeforces]Good Bye 2019 简要题解

    构造题好评,虽然这把崩了 原题解 A 题意 二人游戏,一个人有 \(k_1\) 张牌,另一个人 \(k_2\) 张,满足 \(2\le k_1+k_2=n\le 100\),每张牌上有一个数,保证所有 ...

  6. [题解] Atcoder ARC 142 D Deterministic Placing 结论,DP

    题目 (可能有点长,但是请耐心看完,个人认为比官方题解好懂:P) 首先需要注意,对于任意节点i上的一个棋子,如果在一种走法中它走到了节点j,另一种走法中它走到了节点k,那么这两种走法进行完后,棋子占据 ...

  7. [题解] Codeforces Round #549 (Div. 2) B. Nirvana

    Codeforces Round #549 (Div. 2) B. Nirvana [题目描述] B. Nirvana time limit per test1 second memory limit ...

  8. 题解——CodeForces 438D The Child and Sequence

    题面 D. The Child and Sequence time limit per test 4 seconds memory limit per test 256 megabytes input ...

  9. 【Codeforces 501C】Misha and Forest

    [链接] 我是链接,点我呀:) [题意] 给你一棵树 但是每个节点只告诉你出度个数 以及所有和它相连的点的异或和. 让你还原这棵树 [题解] 叶子节点的话,他所有节点的异或和就是它那唯一的一个爸爸 因 ...

随机推荐

  1. vivado没用上的寄存器变量

    vivado中定义了但没用上的寄存器变量,在综合时会被移除,即没有综合出来.(如下cnt,虽然在y的过程块中用了cnt作为判断条件,但实际上cnt用了跟没用效果一样,所以综合时cnt_reg就被放弃了 ...

  2. AtCoder Beginner Contest 260 G // imos(累积和算法)

    题目传送门:G - Scalene Triangle Area (atcoder.jp) 题意: 给定大小为N*N的OX矩阵,若矩阵的(s,t)处为O,其覆盖范围为:满足以下条件的所有位置(i,j) ...

  3. gotoscan:CMS指纹识别工具

    gotoscan 前言 项目地址 https://github.com/newbe3three/gotoscan 结合自己学习到的Go相关知识,通过实现这个简易的CMS指纹识别工具来锻炼一下自己写代码 ...

  4. day13--Java常用类

    Java常用类 1.包装类 1.1什么是包装类? Java 是面向对象的语言,但不是"纯面向对象"的,比如我们经常用到的基本数据类型就不是对象. 在我们实际应用中,经常需要将基本数 ...

  5. MyBatis-Plus 代码生成

    MyBatis-Plus官网的代码生成器配置不是特别全,在此整理了较为完整的配置,供自己和大家查阅学习. // 代码生成器 AutoGenerator mpg = new AutoGenerator( ...

  6. 我开源了一个Go学习仓库|笔记预览

    前言 大半个月前我参与了字节后端面试,未通过第四面,面试总结写在了这篇文章: https://juejin.cn/post/7132712873351970823 在此文的末尾,我写到为了全面回顾Go ...

  7. LeetCode 593. 有效的正方形(向量做法)

    题目 题目链接:593. 有效的正方形 题意:给出二维平面上四个点的坐标,判断这四个点是否能构成一个正方形,四个点的输入顺序不做任何保证. 思路 通过向量运算可以很轻松地解决这道题.任取一点向其他三点 ...

  8. 「雅礼集训 2017 Day2」水箱 (数据结构+dp ,一个log)

    题面 题解 在网上看到有些做法,有什么平衡树.启发式合并等等总之复杂度O(Tnlog^2(n))的不优做法,这里我就用一个O(Tnlogn)的做法好了 其实大体上推导的思路都是一样的. 我们很容易发现 ...

  9. Maven中使用ssm框架出现:org.apache.tomcat.util.modeler.BaseModelMBean.invoke 调用方法[manageApp]时发生异常

    org.apache.tomcat.util.modeler.BaseModelMBean.invoke 调用方法[manageApp]时发生异常 首先可以排查一下像: @RequestMapping ...

  10. vue2和vue3的区别?

    vue2和vue3的主要区别在于以下几点: 1.生命周期函数钩子不同 2.数据双向绑定原理不同 3.定义变量和方法不同 4.指令和插槽的使用不同 5.API类型不同 6.是否支持碎片 7.父子组件之间 ...