拉格朗日插值优化DP
拉格朗日插值优化DP
模拟赛出现神秘插值,太难啦!!
回忆拉格朗日插值是用来做什么的
对于一个多项式\(F(x)\),如果已知它的次数为\(m - 1\),且已知\(m\)个点值,那么可以得到
\]
所以,如果我们知道要求的东西是一个次数比较友好的多项式且容易求出一些点值,那么就可以把答案插出来。
来看两道例题
CF995F Cowmpany Cowmpensation
题意:给你一棵树,要求给每个点分配\([1,d]\)内的权值,且儿子的权值不能超过父亲的权值,对\(10^9+7\)取模,\(D\leq 10^9\)
很容易得到一个\(\text{DP}\),设\(f_{u,i}\)表示u子树内u的权值大于等于\(i\)的答案,那么
\]
但是\(i\)的值域是\([1,D]\),根本做不了,怎么办?
拉格朗日插值登场。
假设\(u\)是一个叶子结点,那么\(f_{u,i} = D - i + 1\)是一个关于\(i\)的一次多项式
由于转移方程是简单的乘法和加法的形式,可以看出来\(f_{u,i}\)就是一个关于\(i\)的多项式,到这里我们需要考虑的就是这个多项式的次数是多少。
设\(g_u\)表示\(f_{u,i}\)的次数,那么根据上面的状态转移方程,可以得到
\]
根据多项式基础知识,一个多项式差分,次数减一;多个多项式相乘,子树相加,那么就有
\]
这里\(sz_u\)表示\(u\)子树的大小
所以答案就是一个关于\(d\)的\(n\)次多项式,求出\(n+1\)个点值后即可使用拉格朗日插值得到答案。
点我看代码 (-o⌒) ☆
#include <cstdio>
#include <vector>
#include <iostream>
#define LL long long
using namespace std;
template <typename T>
inline void read(T &x) {
x = 0; int f = 0; char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = 1;
for(; isdigit(ch); ch = getchar()) x = (x << 3) + (x << 1) + (ch ^ 48);
if(f) x = ~x + 1;
}
const int N = 3010;
const LL P = 1e9 + 7;
int n, d, m;
int f[N][N << 1];
int y[N << 1];
vector <int> G[N];
void dfs(int u) {
for(int i = 1; i <= m; ++i) f[u][i] = 1;
for(auto v : G[u]) {
dfs(v);
for(int i = m; i ; --i)
f[u][i] = 1ll * f[u][i] * f[v][i] % P;
}
for(int i = m - 1; i ; --i) f[u][i] = (f[u][i] + f[u][i + 1]) % P;
}
LL fpow(LL x, int pnt = P - 2) {
LL res = 1;
for(; pnt; pnt >>= 1, x = x * x % P) if(pnt & 1) res = res * x % P;
return res;
}
int Lagrange(int x) {
if(1 <= x && x <= m) return y[x];
LL res = 0;
for(int i = 1; i <= m; ++i) {
LL p = y[i], q = 1;
for(int j = 1; j <= m; ++j)
if(i ^ j) p = p * (x - j) % P, q = q * (i - j) % P;
res = (res + p * fpow(q)) % P;
}
return res;
}
int main() {
read(n), read(d);
for(int i = 2, u; i <= n; ++i) {
read(u);
G[u].emplace_back(i);
}
m = n + 1;
dfs(1);
for(int i = 1; i <= m; ++i) y[m - i + 1] = f[1][i];
printf("%d\n",Lagrange(d));
}
[集训队互测 2012] calc
经典题
\(\text{DP}\)还是很容易,首先由于互不相等,先转化成\(a_i\)有序,然后设\(f_{i,j}\)表示已经填了\(i\)个数,值域为\([1,j]\),转移方程就是
\]
按照上面的方法,设\(g_i\)为关于\(j\)的多项式\(f_{i,j}\)的次数,那么有
\]
然后\(f_{n,i}\)的次数就是\(2n\),求\(2n+1\)个点就能把答案插出来了
点我看代码☆ ̄(>。☆)
#include <cstdio>
#include <iostream>
#define LL long long
using namespace std;
template <typename T>
inline void read(T &x) {
x = 0; int f = 0; char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = 1;
for(; isdigit(ch); ch = getchar()) x = (x << 3) + (x << 1) + (ch ^ 48);
if(f) x = ~x + 1;
}
const int N = 510;
int k, n, m;
LL P, y[N << 1], f[N][N << 1];
LL fpow(LL x, int pnt = P - 2) {
LL res = 1;
for(; pnt; pnt >>= 1, x = x * x % P) if(pnt & 1) res = res * x % P;
return res;
}
LL Lagrange(int x) {
if(1 <= x && x <= m) return y[x];
LL res = 0;
for(int i = 1; i <= m; ++i) {
LL p = y[i], q = 1;
for(int j = 1; j <= m; ++j)
if(j != i) p = p * (k - j) % P, q = q * (i - j) % P;
if(p < 0) p += P; if(q < 0) q += P;
res = (res + p * fpow(q)) % P;
}
return res;
}
int main() {
read(k), read(n), read(P), m = (n << 1) + 1;
LL fac = 1; for(int i = 1; i <= n; ++i) fac = fac * i % P;
for(int i = 0; i <= m; ++i) f[0][i] = 1;
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= m; ++j)
f[i][j] = (f[i - 1][j - 1] * j + f[i][j - 1]) % P;
for(int i = 1; i <= m; ++i) y[i] = f[n][i];
printf("%d\n",fac * Lagrange(k) % P);
}
总结
拉格朗日插值优化\(\text{DP}\)是一种优化思路,在值域比较大,容易求点值的时候可以考虑,上面给出的例子比较简单,需要在遇到具体问题时具体考虑。
拉格朗日插值优化DP的更多相关文章
- BZOJ.5339.[TJOI2018]教科书般的亵渎(拉格朗日插值) & 拉格朗日插值学习笔记
BZOJ 洛谷 题意的一点说明: \(k\)次方这个\(k\)是固定的,也就是最初需要多少张亵渎,每次不会改变: 因某个怪物死亡引发的亵渎不会计分. 不难发现当前所需的张数是空格数+1,即\(m+1\ ...
- jzoj5683. 【GDSOI2018模拟4.22】Prime (Min_25筛+拉格朗日插值+主席树)
题面 \(n\leq 10^{12},k\leq 100\) 题解 一眼就是一个\(Min\_25\)筛+拉格朗日插值优化,然而打完之后交上去发现只有\(60\)分 神\(tm\)还要用主席树优化-- ...
- BZOJ.4559.[JLOI2016]成绩比较(DP/容斥 拉格朗日插值)
BZOJ 洛谷 为什么已经9点了...我写了多久... 求方案数,考虑DP... \(f[i][j]\)表示到第\(i\)门课,还有\(j\)人会被碾压的方案数. 那么\[f[i][j]=\sum_{ ...
- P4463 [集训队互测2012] calc 拉格朗日插值 dp 多项式分析
LINK:calc 容易得到一个nk的dp做法 同时发现走不通了 此时可以考虑暴力生成函数. 不过化简那套不太熟 且最后需要求多项式幂级数及多项式exp等难写的东西. 这里考虑观察优化dp的做法. 不 ...
- 【BZOJ2655】calc DP 数学 拉格朗日插值
题目大意 一个序列\(a_1,\ldots,a_n\)是合法的,当且仅当: 长度为给定的\(n\). \(a_1,\ldots,a_n\)都是\([1,m]\)中的整数. \(a_1, ...
- BZOJ.2655.calc(DP/容斥 拉格朗日插值)
BZOJ 洛谷 待补.刚刚政治会考完来把它补上了2333.考数学去了. DP: 首先把无序化成有序,选严格递增的数,最后乘个\(n!\). 然后容易想到令\(f_{i,j}\)表示到第\(i\)个数, ...
- 【BZOJ】4559: [JLoi2016]成绩比较 计数DP+排列组合+拉格朗日插值
[题意]n位同学(其中一位是B神),m门必修课,每门必修课的分数是[1,Ui].B神碾压了k位同学(所有课分数<=B神),且第x门课有rx-1位同学的分数高于B神,求满足条件的分数情况数.当有一 ...
- BZOJ4599[JLoi2016&LNoi2016]成绩比较(dp+拉格朗日插值)
这个题我们首先可以dp,f[i][j]表示前i个科目恰好碾压了j个人的方案数,然后进行转移.我们先不考虑每个人的分数,先只关心和B的相对大小关系.我们设R[i]为第i科比B分数少的人数,则有f[i][ ...
- bzoj 4559 [JLoi2016]成绩比较 —— DP+拉格朗日插值
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4559 看了看拉格朗日插值:http://www.cnblogs.com/ECJTUACM-8 ...
随机推荐
- CentOS7桥接模式上不了外网的配置
电脑VM10装了CentOS7后用NAT模式可以上网,但我想要的是桥接模式,因为我要用Xshell5进行远程访问.所以要 ifconfig 找到ip .那么为什么桥接模式上不了外网呢? 首先参考了 h ...
- Luogu1880 [NOI1995]石子合并 (区间DP)
一个1A主席树的男人,沦落到褪水DP举步维艰 #include <iostream> #include <cstdio> #include <cstring> #i ...
- Docker 11 自定义镜像
参考源 https://www.bilibili.com/video/BV1og4y1q7M4?spm_id_from=333.999.0.0 https://www.bilibili.com/vid ...
- Word 段前分页是什么?怎么设置?
描述 这两个标题在第一个标题的页中,且两个标题都没有独立分页.要让每一个标题独立分页,需要对标题的格式进行修改. 段前分页指的是标题与标题之间不在同一个页中,每一个标题都在独立的页中. 设置段前分页 ...
- 你言我语 By Twikoo
主要做了两件事: 一是前端魔改 二是首页调用(替代原 bber) 注明:以下样式.功能代码基于 Twikoo v1.6.4 前端魔改 "管理面板"按钮同步隐藏输入框.先到twiko ...
- Codeforces Round #585 (Div. 2) E. Marbles (状压DP),BZOJ大理石(同一道题)题解
题意 林老师是一位大理石收藏家,他在家里收藏了n块各种颜色的大理石,第i块大理石的颜色为ai.但是林老师觉得这些石头在家里随意摆放太过凌乱,他希望把所有颜色相同的石头放在一起.换句话说,林老师需要对现 ...
- Stringboot中@Autowired加了static就属性值就为null
//错误 @Autowired private static DepartmentDao departmentDao; @Autowired注入,将bean注入进来 @Autowired通过sprin ...
- laravel框架中验证后在页面提示错误信息
{{-- 显示错误信息 判断:如果有错误则进行显示,--}} {{-- 通过$errors->any() 获取是否有错误,如果有则返回布尔值true,没有返回布尔值false--}} @if($ ...
- CF-1684C - Column Swapping
Problem - 1684C - Codeforces 题意: 现在有一个n*m的棋盘,每个棋子有一个值,你可以交换两列棋盘的棋子位置,使得每一行的棋子从左到右为非递减. 题解: 只需要判断一行不满 ...
- 【PMP学习笔记】第5章 项目范围管理
一.规范管理的内涵 项目范围管理:包括确保项目做且只做所需的全部工作,以成功完成项目的各个过程. 项目范围:为交付具有规定特性与功能的产品.服务或成果而必须完成的工作. 预测型:开始时定义可交付成果, ...