拉格朗日插值优化DP
拉格朗日插值优化DP
模拟赛出现神秘插值,太难啦!!
回忆拉格朗日插值是用来做什么的
对于一个多项式\(F(x)\),如果已知它的次数为\(m - 1\),且已知\(m\)个点值,那么可以得到
\]
所以,如果我们知道要求的东西是一个次数比较友好的多项式且容易求出一些点值,那么就可以把答案插出来。
来看两道例题
CF995F Cowmpany Cowmpensation
题意:给你一棵树,要求给每个点分配\([1,d]\)内的权值,且儿子的权值不能超过父亲的权值,对\(10^9+7\)取模,\(D\leq 10^9\)
很容易得到一个\(\text{DP}\),设\(f_{u,i}\)表示u子树内u的权值大于等于\(i\)的答案,那么
\]
但是\(i\)的值域是\([1,D]\),根本做不了,怎么办?
拉格朗日插值登场。
假设\(u\)是一个叶子结点,那么\(f_{u,i} = D - i + 1\)是一个关于\(i\)的一次多项式
由于转移方程是简单的乘法和加法的形式,可以看出来\(f_{u,i}\)就是一个关于\(i\)的多项式,到这里我们需要考虑的就是这个多项式的次数是多少。
设\(g_u\)表示\(f_{u,i}\)的次数,那么根据上面的状态转移方程,可以得到
\]
根据多项式基础知识,一个多项式差分,次数减一;多个多项式相乘,子树相加,那么就有
\]
这里\(sz_u\)表示\(u\)子树的大小
所以答案就是一个关于\(d\)的\(n\)次多项式,求出\(n+1\)个点值后即可使用拉格朗日插值得到答案。
点我看代码 (-o⌒) ☆
#include <cstdio>
#include <vector>
#include <iostream>
#define LL long long
using namespace std;
template <typename T>
inline void read(T &x) {
x = 0; int f = 0; char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = 1;
for(; isdigit(ch); ch = getchar()) x = (x << 3) + (x << 1) + (ch ^ 48);
if(f) x = ~x + 1;
}
const int N = 3010;
const LL P = 1e9 + 7;
int n, d, m;
int f[N][N << 1];
int y[N << 1];
vector <int> G[N];
void dfs(int u) {
for(int i = 1; i <= m; ++i) f[u][i] = 1;
for(auto v : G[u]) {
dfs(v);
for(int i = m; i ; --i)
f[u][i] = 1ll * f[u][i] * f[v][i] % P;
}
for(int i = m - 1; i ; --i) f[u][i] = (f[u][i] + f[u][i + 1]) % P;
}
LL fpow(LL x, int pnt = P - 2) {
LL res = 1;
for(; pnt; pnt >>= 1, x = x * x % P) if(pnt & 1) res = res * x % P;
return res;
}
int Lagrange(int x) {
if(1 <= x && x <= m) return y[x];
LL res = 0;
for(int i = 1; i <= m; ++i) {
LL p = y[i], q = 1;
for(int j = 1; j <= m; ++j)
if(i ^ j) p = p * (x - j) % P, q = q * (i - j) % P;
res = (res + p * fpow(q)) % P;
}
return res;
}
int main() {
read(n), read(d);
for(int i = 2, u; i <= n; ++i) {
read(u);
G[u].emplace_back(i);
}
m = n + 1;
dfs(1);
for(int i = 1; i <= m; ++i) y[m - i + 1] = f[1][i];
printf("%d\n",Lagrange(d));
}
[集训队互测 2012] calc
经典题
\(\text{DP}\)还是很容易,首先由于互不相等,先转化成\(a_i\)有序,然后设\(f_{i,j}\)表示已经填了\(i\)个数,值域为\([1,j]\),转移方程就是
\]
按照上面的方法,设\(g_i\)为关于\(j\)的多项式\(f_{i,j}\)的次数,那么有
\]
然后\(f_{n,i}\)的次数就是\(2n\),求\(2n+1\)个点就能把答案插出来了
点我看代码☆ ̄(>。☆)
#include <cstdio>
#include <iostream>
#define LL long long
using namespace std;
template <typename T>
inline void read(T &x) {
x = 0; int f = 0; char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = 1;
for(; isdigit(ch); ch = getchar()) x = (x << 3) + (x << 1) + (ch ^ 48);
if(f) x = ~x + 1;
}
const int N = 510;
int k, n, m;
LL P, y[N << 1], f[N][N << 1];
LL fpow(LL x, int pnt = P - 2) {
LL res = 1;
for(; pnt; pnt >>= 1, x = x * x % P) if(pnt & 1) res = res * x % P;
return res;
}
LL Lagrange(int x) {
if(1 <= x && x <= m) return y[x];
LL res = 0;
for(int i = 1; i <= m; ++i) {
LL p = y[i], q = 1;
for(int j = 1; j <= m; ++j)
if(j != i) p = p * (k - j) % P, q = q * (i - j) % P;
if(p < 0) p += P; if(q < 0) q += P;
res = (res + p * fpow(q)) % P;
}
return res;
}
int main() {
read(k), read(n), read(P), m = (n << 1) + 1;
LL fac = 1; for(int i = 1; i <= n; ++i) fac = fac * i % P;
for(int i = 0; i <= m; ++i) f[0][i] = 1;
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= m; ++j)
f[i][j] = (f[i - 1][j - 1] * j + f[i][j - 1]) % P;
for(int i = 1; i <= m; ++i) y[i] = f[n][i];
printf("%d\n",fac * Lagrange(k) % P);
}
总结
拉格朗日插值优化\(\text{DP}\)是一种优化思路,在值域比较大,容易求点值的时候可以考虑,上面给出的例子比较简单,需要在遇到具体问题时具体考虑。
拉格朗日插值优化DP的更多相关文章
- BZOJ.5339.[TJOI2018]教科书般的亵渎(拉格朗日插值) & 拉格朗日插值学习笔记
BZOJ 洛谷 题意的一点说明: \(k\)次方这个\(k\)是固定的,也就是最初需要多少张亵渎,每次不会改变: 因某个怪物死亡引发的亵渎不会计分. 不难发现当前所需的张数是空格数+1,即\(m+1\ ...
- jzoj5683. 【GDSOI2018模拟4.22】Prime (Min_25筛+拉格朗日插值+主席树)
题面 \(n\leq 10^{12},k\leq 100\) 题解 一眼就是一个\(Min\_25\)筛+拉格朗日插值优化,然而打完之后交上去发现只有\(60\)分 神\(tm\)还要用主席树优化-- ...
- BZOJ.4559.[JLOI2016]成绩比较(DP/容斥 拉格朗日插值)
BZOJ 洛谷 为什么已经9点了...我写了多久... 求方案数,考虑DP... \(f[i][j]\)表示到第\(i\)门课,还有\(j\)人会被碾压的方案数. 那么\[f[i][j]=\sum_{ ...
- P4463 [集训队互测2012] calc 拉格朗日插值 dp 多项式分析
LINK:calc 容易得到一个nk的dp做法 同时发现走不通了 此时可以考虑暴力生成函数. 不过化简那套不太熟 且最后需要求多项式幂级数及多项式exp等难写的东西. 这里考虑观察优化dp的做法. 不 ...
- 【BZOJ2655】calc DP 数学 拉格朗日插值
题目大意 一个序列\(a_1,\ldots,a_n\)是合法的,当且仅当: 长度为给定的\(n\). \(a_1,\ldots,a_n\)都是\([1,m]\)中的整数. \(a_1, ...
- BZOJ.2655.calc(DP/容斥 拉格朗日插值)
BZOJ 洛谷 待补.刚刚政治会考完来把它补上了2333.考数学去了. DP: 首先把无序化成有序,选严格递增的数,最后乘个\(n!\). 然后容易想到令\(f_{i,j}\)表示到第\(i\)个数, ...
- 【BZOJ】4559: [JLoi2016]成绩比较 计数DP+排列组合+拉格朗日插值
[题意]n位同学(其中一位是B神),m门必修课,每门必修课的分数是[1,Ui].B神碾压了k位同学(所有课分数<=B神),且第x门课有rx-1位同学的分数高于B神,求满足条件的分数情况数.当有一 ...
- BZOJ4599[JLoi2016&LNoi2016]成绩比较(dp+拉格朗日插值)
这个题我们首先可以dp,f[i][j]表示前i个科目恰好碾压了j个人的方案数,然后进行转移.我们先不考虑每个人的分数,先只关心和B的相对大小关系.我们设R[i]为第i科比B分数少的人数,则有f[i][ ...
- bzoj 4559 [JLoi2016]成绩比较 —— DP+拉格朗日插值
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4559 看了看拉格朗日插值:http://www.cnblogs.com/ECJTUACM-8 ...
随机推荐
- Java 将Excel转为XML
可扩展标记语言(XML)文件是一种标准的文本文件,它使用特定的标记来描述文档的结构以及其他特性.通常,我们可以通过格式转换的方式来得到XML格式的文件.本文,将通过Java代码介绍如何实现由Excel ...
- 密码学系列之:PEM和PKCS7,PKCS8,PKCS12
目录 简介 PEM PKCS7 PKCS8 PKCS12 总结 简介 PEM是一种常见的保存key或者证书的格式,PEM格式的文件一般来说后缀是以.pem结尾的.那么PEM到底是什么呢?它和常用的证书 ...
- js仿toDoList(待办事项)练习
JS的一个小练习 展示成果 话不多说 html骨架 <!DOCTYPE html> <html lang="en"> <head> <me ...
- 前端知识之CSS(1)-css语法、css选择器(属性、伪类、伪元素、分组与嵌套)、css组合器
目录 前端基础之css 1.关于css的介绍 2.css语法 3.三种编写CSS的方式 3.1.style内部直接编写css代码 3.2.link标签引入外部css文件 3.3.标签内直接书写 4.c ...
- DLL Proxy Loading Bypass AV
DLL Proxy Loading Bypass AV 前言 感谢国外大佬开源的免杀思路,本文就是基于该文章的一次实践. https://redteaming.co.uk/2020/07/12/dll ...
- 【MySQL】从入门到精通8-SQL数据库编程
上期:[MySQL]从入门到精通7-设计多对多数据库 第零章:Mac用户看这里: mac终端写MySQL和windows基本相同,除了配置环境变量和启动有些许不同以外. 先配置环境变量,在终端输入vi ...
- 【漏洞分析】KaoyaSwap 安全事件分析
相关信息 KaoyaSwap 是 BSC 链上的一个自动做市商 AMM.然后,现在他们的官网 https://www.kaoyaswap.com/ 已经打不开了(如果我打开方式没错的话).所以就直接进 ...
- React报错之Property 'value' does not exist on type EventTarget
正文从这开始~ 总览 当event参数的类型不正确时,会产生"Property 'value' does not exist on type EventTarget"错误.为了解决 ...
- 安装配置华为Fusion acces(Lite AD)并使Windows登录
安装Fusion access虚拟机 根据自己情况自定义 点击编辑虚拟机设置 添加镜像 点击确定并开启此虚拟机 选择第二个 Install 添加Network:修改hostname:修改密码 回车添加 ...
- 超详细 VS Code 配置C/C++教程
写在前面 如果您使用的电脑内存 \(\leq 4 \texttt{GB}\),建议您使用Dev-C++,否则会到时内存占用爆满,体验感不佳. 网上的很多教程都不够详细,这里我把每一步.每一个操作都详细 ...