P1848 [USACO12OPEN]Bookshelf G
简要题意
给你 \(N\) 本书 \((h_i,w_i)\),你要将书分成任意段(顺序不能改变),使得每一段 \(j\) 中 \(\sum\limits_{i \in j} w_i \leq L\),段 \(j\) 的代价为 \(\max\limits_{i \in j}{h_i}\)。你需要输出每一段的代价之和的最小值。
\(1 \leq N \leq 10^{5}\)
思路
朴素 DP 思路
设 \(f_i\) 为前 \(i\) 本书的代价和。则:
& W(i,j) = \sum_{k=i}^{j}{w_k} \\
& H(i,j) = \max_{k=i}^{j}{h_k} \\
& f_i = \min_{W(j,i) \leq L}{(f_{j-1} + H(j,i))}
\end{aligned}
\]
解释:将 \([j,i]\) 中的书放在合并,然后成为一个新的段。
时间复杂度 \(O(n^3)\)。经过前缀和优化后 \(O(n^2)\),无法通过本题。
代码如下:
for(int i=1;i<=n;i++){
dp[i]=0x7f7f7f7f7fll;
sum[i]=sum[i-1]+w[i];
}
for(int i=1;i<=n;i++){
mn=INT_MIN;
for(int j=i;j>0;j--){
mn=max(mn,h[j]);
if(sum[i]-sum[j-1]<=m){
dp[i]=min(dp[i],dp[j-1]+mn);
}
else{
break;
}
}
}
cout<<dp[n];
DP 优化
首先,最后一个满足 \(W(j,i) \leq l\) 的 \(j\) 是可以二分得出的(因为题目中 \(w\) 的前缀和是单调不降的)。我们姑且设其为 \(p_i\),则:
\]
另外我们设 \(l_i\) 为左边第一个满足 \(h_j>h_i\) 的 \(j\),即:
\]
那么如果 \(l_i \lt j \leq i\),则 \(H(j,i)=h_i\),只需要找到最小的 \(f_{j-1}\)即可。至于其他的,就用继承下来的。这是正确的。
这道题没法 ODT,老老实实的线段树。
代码
耗时最长的一道题祭
#include <bits/stdc++.h>
#define ls (i<<1)
#define rs (i<<1|1)
#define mid ((l+r)>>1)
#define int long long
using namespace std;
int f,n,l,h[100005],w[100005],sumw[100005];
namespace sgt{
struct node{
int f,fh,tag;
} t[400005];
void pushup(int i){
t[i].f=min(t[ls].f,t[rs].f);
t[i].fh=min(t[ls].fh,t[rs].fh);
}
void pushdown(int i){
if(t[i].tag!=(-1e9)){
t[ls].fh=t[ls].f+t[i].tag;
t[rs].fh=t[rs].f+t[i].tag;
t[ls].tag=t[i].tag;
t[rs].tag=t[i].tag;
t[i].tag=(-1e9);
}
}
void build(int i,int l,int r){
if(l==r){
t[i].fh=LLONG_MAX;
t[i].f=t[i].fh;
t[i].tag=(-1e9);
return;
}
build(ls,l,mid);
build(rs,mid+1,r);
pushup(i);
}
void init(int p,int i,int l,int r){
if(l==r){
t[i].fh=LLONG_MAX;
t[i].f=f;
return;
}
pushdown(i);
if(p<=mid){
init(p,ls,l,mid);
}
else{
init(p,rs,mid+1,r);
}
pushup(i);
}
void assign(int ql,int qr,int k,int i,int l,int r){
if(ql<=l&&r<=qr){
t[i].fh=t[i].f+k;
t[i].tag=k;
return;
}
pushdown(i);
if(ql<=mid){
assign(ql,qr,k,ls,l,mid);
}
if(mid<qr){
assign(ql,qr,k,rs,mid+1,r);
}
pushup(i);
}
int get(int ql,int qr,int i,int l,int r){
if(ql<=l&&r<=qr){
return t[i].fh;
}
pushdown(i);
int ret=LLONG_MAX;
if(mid>=ql){
ret=min(ret,get(ql,qr,ls,l,mid));
}
if(mid<qr){
ret=min(ret,get(ql,qr,rs,mid+1,r));
}
return ret;
}
}
stack<int> sta;
int lft[100005];
signed main(){
cin>>n>>l;
for(int i=1;i<=n;i++){
cin>>h[i]>>w[i];
sumw[i]=sumw[i-1]+w[i];
}
h[0]=INT_MAX;sta.push(0);
for(int i=1;i<=n;i++){
while(!sta.empty()&&h[i]>h[sta.top()]){
sta.pop();
}
lft[i]=sta.top();
sta.push(i);
}
sgt::build(1,1,n);
for(int i=1;i<=n;i++){
// cout<<"INIT "<<i<<'\n';
sgt::init(i,1,1,n);
// cout<<"ASSIGN "<<i<<'\n';
sgt::assign(lft[i]+1,i,h[i],1,1,n);
// cout<<"LOWERBOUND "<<i<<'\n';
int ll = lower_bound(sumw,sumw+i+1,sumw[i]-l)-sumw;
if(ll<i){
f=sgt::get(ll+1,i,1,1,n);
}
}
cout<<f;
}
P1848 [USACO12OPEN]Bookshelf G的更多相关文章
- 2021.12.08 P1848 [USACO12OPEN]Bookshelf G(线段树优化DP)
2021.12.08 P1848 [USACO12OPEN]Bookshelf G(线段树优化DP) https://www.luogu.com.cn/problem/P1848 题意: 当农夫约翰闲 ...
- p1848 [USACO12OPEN]书架Bookshelf
分析 单调队列优化dp即可 正确性显然,详见代码 代码 #include<bits/stdc++.h> using namespace std; #define int long long ...
- 解题:USACO12OPEN Bookshelf
题面 从零开始的DP学习之肆 当DP方程中的一部分具有某种单调性时可以用数据结构或者预处理维护来降低复杂度 一开始没有看懂题,尴尬,后来发现题目可以简化成这个样子: 将一个序列划分为若干段,每段长度不 ...
- pkuwc 前的任务计划
菜鸡 wxw 的计划(肯定会咕咕咕 12.27 luogu P4244 [SHOI2008]仙人掌图 II(咕咕咕 luogu P4246 [SHOI2008]堵塞的交通 (没有咕! luogu P1 ...
- Storyboards Tutorial 03
这一节主要介绍segues,static table view cells 和 Add Player screen 以及 a game picker screen. Introducing Segue ...
- 文件图标SVG
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink ...
- [USACO12OPEN]书架Bookshelf
Description 当农夫约翰闲的没事干的时候,他喜欢坐下来看书.多年过去,他已经收集了 N 本书 (1 <= N <= 100,000), 他想造一个新的书架来装所有书. 每本书 i ...
- [Luogu1848][USACO12OPEN]书架Bookshelf DP+set+决策单调性
题目链接:https://www.luogu.org/problem/show?pid=1848 题目要求书必须按顺序放,其实就是要求是连续的一段.于是就有DP方程$$f[i]=min\{f[j]+m ...
- [转]Linux下g++编译与使用静态库(.a)和动态库(.os) (+修正与解释)
在windows环境下,我们通常在IDE如VS的工程中开发C++项目,对于生成和使用静态库(*.lib)与动态库(*.dll)可能都已经比较熟悉,但是,在linux环境下,则是另一套模式,对应的静态库 ...
随机推荐
- LeetCode------递归(爬楼梯)
1.递归 1.一个问题的解可以分解为几个子问题的解. 2.这个问题与分解之后的子问题,除了数据规模不同,求解思路完全一样 3.存在基线/终止条件 来源:力扣(LeetCode) 链接:https:// ...
- break ,continue,retrun的区别
break ,continue,retrun的区别 1:break 在循环体内结束整个循环过程 for (var i = 1; i <= 5; i++) { if(i == 3){ break; ...
- 痞子衡嵌入式:i.MXRT中FlexSPI外设不常用的读选通采样时钟源 - loopbackFromSckPad
大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家分享的是i.MXRT中FlexSPI外设不常用的读选通采样时钟源 - loopbackFromSckPad. 最近碰到一个客户,他们在 i.MX ...
- ElasticSearch之Quick.ElasticSearch.Furion组件的使用
ElasticSearch 使用说明 本章,我们主要讲解在.Net 中对Quick.ElasticSearch.Furion的使用进行介绍! ElasticSearch 的官方客户端 API 文档地址 ...
- Mockito使用方法(Kotlin)
一.为什么要使用Mockito 1.实际案例 1.1 遇到的问题 对于经常维护的项目,经常遇到一个实际问题:需求不停改变,导致架构经常需要修改某些概念的定义. 对于某些十分基础又十分常用的概念,常常牵 ...
- vue中动态引入图片为什么要是require, 你不知道的那些事
相信用过vue的小伙伴,肯定被面试官问过这样一个问题:在vue中动态的引入图片为什么要使用require 有些小伙伴,可能会轻蔑一笑:呵,就这,因为动态添加src被当做静态资源处理了,没有进行编译,所 ...
- Python基础之面向对象:1、面向对象及编程思想
一.人狗大战 1.需求 用代码模拟人.狗打架的小游戏 人和狗种类不同,因此双方的属性各不相同 推导一: 人和狗各有不同属性 使用字典方式储存属性较为方便,并可储存多种属性 # 1.在字典内储存'人'属 ...
- Educational Codeforces Round 130 (Rated for Div. 2) C. awoo's Favorite Problem
https://codeforc.es/contest/1697/problem/C 因为规则中,两种字符串变换都与'b'有关,所以我们根据b的位置来进行考虑: 先去掉所有的'b',如果两字符串不相等 ...
- java安全之CC1浅学(1)
前言 由于CC链还是比较复杂的,我们可以先看命令执行的部分payload之后再加上反序列化部分组成一个完整的payload 调试一 项目导入依赖,这里使用3.1版本 <!-- https://m ...
- ui自动化测试数据复原遇到的坑——2、python连接informix时pytest报致命错误Windows fatal exception: access violation
python连接informix只能通过jdbc(需要先部署java环境.我试过到IBM上下载ODBC但结局是失败的),在执行pytest时发现有一串报错(大致是下面的这样): Windows fat ...