[bzoj2878][Noi2012]迷失游乐园(基环树dp)

bzoj luogu

题意:一颗数或是基环树,随机从某个点开始一直走,不走已经到过的点,求无路可走时的路径长期望。

对于一棵树:

用两个$dp$数组分别记录从这个点起向上向下走的期望

向下走的$dp$不用多说

向上走的$dp$:

对于从$u$计算$v$的dp

$dp[v]$应当是从u向周围引出所有路径减去走向t的路径的期望后再除以$deg_{u}-1$

对于基环树:

环上的点很少。

此时环上的点的向上$dp$指从u出发向环上两头走的期望。

如何计算:对于环上每一个点都向环的两头各dp一次取平均值。

完毕。

#include<cstdio>
#include<algorithm>
using namespace std;
const int N=100011;
const double eps=1e-8;
template<typename TP>void read(TP &kk){
#define ak *
TP phy=0,ioi=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')ioi=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){phy=phy*10+ch-'0';ch=getchar();}
kk=phy ak ioi;
}
int n,m;
struct sumireko
{
int to,ne,w;
}e[N*2];
int he[N],ecnt;
void addline(int f,int t,int w)
{
e[++ecnt].to=t;
e[ecnt].ne=he[f];
he[f]=ecnt;
e[ecnt].w=w;
}
bool onr[N];
double deg[N],sc[N],dpu[N],dpd[N];
void dfs1(int x,int f)
{
for(int i=he[x],t;i;i=e[i].ne)
{
t=e[i].to;
if(t==f||onr[t]) continue;
dfs1(t,x);
dpd[x]+=dpd[t]+e[i].w;
}
if(sc[x]>eps) dpd[x]/=sc[x];
}
void dfs2(int x,int f)
{
for(int i=he[x],t;i;i=e[i].ne)
{
t=e[i].to;
if(f==t||onr[t]) continue;
dpu[t]=e[i].w;
if(deg[x]-1.0>eps)dpu[t]+=(dpd[x]*sc[x]-e[i].w-dpd[t]+dpu[x]*(deg[x]-sc[x]))/(deg[x]-1.0);
dfs2(t,x);
}
}
int rnd[N],hp;
int sp;bool vv[N];
int find(int x,int f)
{
if(vv[x]){sp=x;return 1;}
vv[x]=1;int tmp;
for(int i=he[x],t;i;i=e[i].ne)
{
t=e[i].to;
if(t==f) continue;
if(tmp=find(t,x))
{
if(tmp==1)
{
rnd[++hp]=x;
onr[x]=1;
if(x!=sp) return 1;
}
return 2;
}
}
return 0;
}
double dpt[N];
void dfs3(int x,int f,int o,int s)
{
if(!o)
{
int g=0;
for(int i=he[x],t;i;i=e[i].ne)
{
t=e[i].to;
if(!onr[t]) continue;
g++;dfs3(t,x,g,s);
dpu[x]+=dpt[t]+e[i].w;
}
dpu[x]/=2;
return;
}
double tmp=0;
dpt[x]=0;
for(int i=he[x],t;i;i=e[i].ne)
{
t=e[i].to;
if(!onr[t]||t==s||t==f) continue;
dfs3(t,x,o,s);
dpt[x]+=dpt[t]+e[i].w;
tmp+=1;
}
if(sc[x]+tmp>eps)
dpt[x]=(dpt[x]+dpd[x]*sc[x])/(sc[x]+tmp);
} double ans;
int xi,yi,wi;
int main()
{
read(n),read(m);
for(int i=1;i<=m;i++)
{
read(xi),read(yi),read(wi);
addline(xi,yi,wi),addline(yi,xi,wi),deg[xi]+=1,deg[yi]+=1;
}
if(m==n-1)
{
for(int i=1;i<=n;i++) sc[i]=deg[i]-1;
sc[1]+=1;
dfs1(1,0);
dfs2(1,0);
for(int i=1;i<=n;i++) ans+=(dpd[i]*sc[i]+dpu[i])/deg[i];
ans/=n;
printf("%.5lf\n",ans);
return 0;
}
find(1,0);
for(int i=1;i<=n;i++) sc[i]=deg[i]-(onr[i]?2.0:1.0);
for(int i=1;i<=hp;i++) dfs1(rnd[i],0);
for(int i=1;i<=hp;i++) dfs3(rnd[i],0,0,rnd[i]);
for(int i=1;i<=hp;i++) dfs2(rnd[i],0);
for(int i=1;i<=n;i++) ans+=(dpd[i]*sc[i]+dpu[i]*(deg[i]-sc[i]))/deg[i];
ans/=n;
printf("%.5lf\n",ans);
return 0;
}

[bzoj2878][Noi2012]迷失游乐园(基环树dp)的更多相关文章

  1. [BZOJ2878][NOI2012]迷失游乐园(环套树DP+概率)

    推荐讲解:https://www.cnblogs.com/Tunix/p/4561493.html 首先考虑树的情况,就是经典的树上概率DP.先DP出down表示从这个点向儿子走能走的期望长度,再DP ...

  2. BZOJ2878 NOI2012迷失游乐园(树形dp+环套树+概率期望)

    考虑树的部分分怎么做.令f[i]为i向子树内走的期望路径长度,转移比较显然.算答案时先把其父亲的答案弄好就可以统计自己的答案了. 环套树也类似.树里直接dp,对环上点暴力考虑环上的每条路径,算完后再在 ...

  3. bzoj2878 [Noi2012]迷失游乐园——概率期望DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2878 这个博客写得很好:https://www.cnblogs.com/qt666/p/72 ...

  4. BZOJ2878 [Noi2012]迷失游乐园 【基环树 + 树形dp + 期望dp】

    题目链接 BZOJ2878 题解 除了实现起来比较长,思维难度还是挺小的 观察数据范围发现环长不超过\(20\),而我们去掉环上任何一个点就可以形成森林 于是乎我们枚举断掉的点,然后只需求出剩余每个点 ...

  5. [luogu2081 NOI2012] 迷失游乐园 (树形期望dp 基环树)

    传送门 题目描述 放假了,小Z觉得呆在家里特别无聊,于是决定一个人去游乐园玩. 进入游乐园后,小Z看了看游乐园的地图,发现可以将游乐园抽象成有n个景点.m条道路的无向连通图,且该图中至多有一个环(即m ...

  6. bzoj2878 [Noi2012]迷失游乐园 [树形dp]

    Description 放假了,小Z认为呆在家里特别无聊.于是决定一个人去游乐园玩. 进入游乐园后.小Z看了看游乐园的地图,发现能够将游乐园抽象成有n个景点.m条道路的无向连通图,且该图中至多有一个环 ...

  7. BZOJ2878 [Noi2012]迷失游乐园

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  8. 【BZOJ 2878】 2878: [Noi2012]迷失游乐园 (环套树、树形概率DP)

    2878: [Noi2012]迷失游乐园 Description 放假了,小Z觉得呆在家里特别无聊,于是决定一个人去游乐园玩.进入游乐园后,小Z看了看游乐园的地图,发现可以将游乐园抽象成有n个景点.m ...

  9. BZOJ 2878: [Noi2012]迷失游乐园( 树形dp )

    一棵树的话直接树形dp(求出往下走和往上走的期望长度). 假如是环套树, 环上的每棵树自己做一遍树形dp, 然后暴力枚举(环上的点<=20)环上每个点跑经过环上的路径就OK了. -------- ...

随机推荐

  1. head 插件 Content-Type header [application/x-www-form-urlencoded] is not supported

    { "error": "Content-Type header [application/x-www-form-urlencoded] is not supported& ...

  2. python 2048游戏控制器

    2048游戏控制器 1 evaluate 要用程序来处理就得对现实的问题进行量化,用数字来表示.在2048游戏中,我们的输入是一个棋局,让我们输出一个移动方向,这样我们需要对棋局进行量化,即我们要评估 ...

  3. schtasks

    schtasks create    创建新的计划任务. 语法 schtasks /create /tn TaskName /tr TaskRun /sc schedule [/mo modifier ...

  4. 最近好忙 (没有)35讲GUI

    0: g.integerbox 表示只输入整数的对话框 1:. g.multenterbox 用来表示多个输入框. import easygui as g msg = "请填写以下联系方式& ...

  5. Vue框架简介和环境搭建

    前言: 此篇随笔为个人学习前端框架Vue,js的技术笔记,主要记录一些自己在学习Vue框架的心得体会和技术总结,作为回顾和笔记使用. 这种写博客的方式,对刚开始学习Vue框架的我,也是一种激励,我相信 ...

  6. .Net 新一代编译器 Roslyn 会带来怎样的影响?

    .Net 新一代编译器 Roslyn 会带来怎样的影响? Roslyn是微软创建的一个.NET编译器平台,该项目于2014年4月3日开源. 最初 C# 语言的编译器是用 C++ 编写的,后来微软推出了 ...

  7. 开发Windows程序的三种方式

    软件开发方式一共有三种:SDK方式.MFC开发方式.托管环境的开发都是基于消息的开发 SDK方式 原装api的调用SDK方式使用C语言和Windows应用程序编程接口(Windows API)来开发W ...

  8. Oracle表的约束

    表的约束定义:表的约束是 ORACLE 数据库中应用在表数据上的一系列强制性规则 按照约束用途分类: PRIMARY KEY:主键约束 FOREIGN KEY:外键约束 CHECK:检查约束 UNIQ ...

  9. linux基础-jdk1.8和weblogic12.2.1.3.0安装

    转至:https://www.cnblogs.com/jiarui-zjb/p/9642416.html 1.环境探查与准备 安装jdk和weblogic前需要对进行安装的linux系统硬件和软件环境 ...

  10. linux模拟cpu占用100%脚本

    转至:https://www.cnblogs.com/opma/p/11607434.html 脚本如下: #! /bin/sh # filename killcpu.sh if [ $# -ne 1 ...