bzoj2007/luoguP2046 海拔(平面图最小割转对偶图最短路)

题目描述:

bzoj  luogu

题解时间:

首先考虑海拔待定点的$h$都应该是多少

很明显它们都是$0$或$1$,并且所有$0$连成一块,所有$1$连成一块

只有海拔交界线对答案有贡献,变成了最小割

但是数据范围很明显不能直接跑网络流

由于这是一个平面图,所以根据套路想到:

平面图最小割=对偶图最小环=最外一块面积分成$S$和$T$跑最短路

从左上角往右下角画一条线把外面一块分成$S$和$T$之后建图。

但是要注意这张图上同一条边两个方向权值不同。

那么建边也按照相同方向,即对应向右下方向的边的新建边为$S$->$T$方向,向左上的反之。

然后就可以跑最短路了。

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;
typedef long long lint;
namespace LarjaIX
{
const int N=511;
int n,id[N][N];
struct sumireko{int to,ne,w;}e[N*N*8];
int he[N*N*2],ecnt;
void addline(int f,int t,int w)
{
e[++ecnt].to=t,e[ecnt].w=w;
e[ecnt].ne=he[f],he[f]=ecnt;
}
struct shion
{
int x;lint d;
shion(){}
shion(int x,lint d):x(x),d(d){}
bool operator < (const shion &a)const{return d>a.d;}
}stmp;
priority_queue<shion>q;
lint dis[N*N*2];
bool vis[N*N*2];
void dijkstra(int sp,int ep)
{
memset(dis,0x3f,sizeof(dis));
q.push(shion(sp,dis[sp]=0));
while(!q.empty())
{
stmp=q.top(),q.pop();
int x=stmp.x;
if(vis[x]) continue;vis[x]=1;
for(int i=he[x],t=e[i].to;i;i=e[i].ne,t=e[i].to)
{
if(dis[t]>dis[x]+e[i].w)
{
dis[t]=dis[x]+e[i].w;
q.push(shion(t,dis[t]));
}
}
}
printf("%lld\n",dis[ep]);
}
int wi;
int maid()
{
#ifdef debug
freopen("sample.in","r",stdin);
freopen("debug.out","w",stdout);
#endif
scanf("%d",&n);
for(int i=1;i<=n;i++)id[i][0]=id[n+1][i]=0,id[0][i]=id[i][n+1]=n*n+1;
for(int i=1;i<=n;i++)for(int j=1;j<=n;j++) id[i][j]=(i-1)*n+j;
for(int i=0;i<=n;i++)for(int j=1;j<=n;j++)
scanf("%d",&wi),addline(id[i+1][j],id[i][j],wi);
for(int i=1;i<=n;i++)for(int j=0;j<=n;j++)
scanf("%d",&wi),addline(id[i][j],id[i][j+1],wi);
for(int i=0;i<=n;i++)for(int j=1;j<=n;j++)
scanf("%d",&wi),addline(id[i][j],id[i+1][j],wi);
for(int i=1;i<=n;i++)for(int j=0;j<=n;j++)
scanf("%d",&wi),addline(id[i][j+1],id[i][j],wi);
dijkstra(0,n*n+1);
return 0;
}
}
int main(){return LarjaIX::maid();}

bzoj2007/luoguP2046 海拔(平面图最小割转对偶图最短路)的更多相关文章

  1. BZOJ 2007 海拔(平面图最小割转对偶图最短路)

    首先注意到,把一个点的海拔定为>1的数是毫无意义的.实际上,可以转化为把这些点的海拔要么定为0,要么定为1. 其次,如果一个点周围的点的海拔没有和它相同的,那么这个点的海拔也是可以优化的,即把这 ...

  2. BZOJ2007/LG2046 「NOI2010」海拔 平面图最小割转对偶图最短路

    问题描述 BZOJ2007 LG2046 题解 发现左上角海拔为 \(0\) ,右上角海拔为 \(1\) . 上坡要付出代价,下坡没有收益,所以有坡度的路越少越好. 所以海拔为 \(1\) 的点,和海 ...

  3. [BZOJ 2007] [Noi2010] 海拔 【平面图最小割(对偶图最短路)】

    题目链接:BZOJ - 2007 题目分析 首先,左上角的高度是 0 ,右下角的高度是 1.那么所有点的高度一定要在 0 与 1 之间.然而选取 [0, 1] 的任何一个实数,都可以用整数 0 或 1 ...

  4. BZOJ1001/LG4001 「ICPC Beijing2006」狼抓兔子 平面图最小割转对偶图最短路

    问题描述 BZOJ1001 LG4001 题解 平面图最小割=对偶图最短路 假设起点和终点间有和其他边都不相交的一条虚边. 如图,平面图的若干条边将一个平面划分为若干个图形,每个图形就是对偶图中的一个 ...

  5. BZOJ2007 [Noi2010]海拔 【平面图最小割转对偶图最短路】

    题目链接 BZOJ2007 题解 这是裸题啊,,要是考试真的遇到就好了 明显是最小割,而且是有来回两个方向 那么原图所有向右的边转为对偶图向下的边 向左的边转为向上 向下转为向左 向上转为向右 然后跑 ...

  6. bzoj1001/luogu4001 狼抓兔子 (最小割/平面图最小割转对偶图最短路)

    平面图转对偶图:先在原图中加一个s->t的边,然后对每个面建一个点,对每条分隔两个面的边加一条连接这两个面对应点的边,边权等于原边权. 然后从刚才加的s->t分割出来的两面对应的两个点跑最 ...

  7. 【Bzoj】1001狼抓兔子(平面图最小割转对偶图最短路)

    YEAH 题目链接 终于做对这道题啦    建图的艰辛难以言表- - 顺便说一句我队列转STL啦 狼抓兔子的地图符合平面图定义,于是将该图转成对偶图并求出对偶图的最短路即可. 这篇博客给了我极大的帮助 ...

  8. bzoj1001平面图最小割转对偶图最短路

    https://www.lydsy.com/JudgeOnline/problem.php?id=1001 很明显的求对偶图的最短路即可(由于特判写错了一直wa = = ) //#pragma com ...

  9. B20J_2007_[Noi2010]海拔_平面图最小割转对偶图+堆优化Dij

    B20J_2007_[Noi2010]海拔_平面图最小割转对偶图+堆优化Dij 题意:城市被东西向和南北向的主干道划分为n×n个区域.城市中包括(n+1)×(n+1)个交叉路口和2n×(n+1)条双向 ...

随机推荐

  1. 矩阵QR分解

    1 orthonormal 向量与 Orthogonal 矩阵 orthonormal 向量定义为 ,任意向量  相互垂直,且模长为1: 如果将  orthonormal 向量按列组织成矩阵,矩阵为  ...

  2. Note/Solution - 转置原理 & 多点求值

    \[\newcommand{\vct}[1]{\boldsymbol{#1}} \newcommand{\mat}[1]{\begin{bmatrix}#1\end{bmatrix}} \newcom ...

  3. Acwing_蓝桥_递归

    一.关于由数据范围反推算法复杂度及其算法 关于输入输出:问题规模小于105:cin,scanf都差不多,但是要是大于105推荐使用scanf和printf. 二.关于递归 1.定义 自己调用自己 2. ...

  4. Java线程的实现/创建方式

    1.继承Thread类: Thread 类本质上是实现了 Runnable 接口的一个实例,代表一个线程的实例. 启动线程的唯一方法就是通过 Thread 类的 start()实例方法. start( ...

  5. 使用Jitpack发布开源Java库

    原文:使用Jitpack发布开源Java库 | Stars-One的杂货小窝 很久之前也写过一篇使用Jitpack发布Android开源库的文章,详见Android开发--发布第三方库到JitPack ...

  6. k8s容器拷贝文件到本地、本地文件拷贝到k8s容器

    k8s容器拷贝文件到本地 kubectl cp qzcsbj/order-b477c8947-tr8rz:/tmp/jstack.txt /root/test/jstack.txt 本地文件拷贝到k8 ...

  7. 思迈特软件Smartbi:专注BI,把产品打造到极致

    在企业服务领域,现在的BI(商业智能)无疑是妥妥的风口.不过在20多年前,BI却完全是一幅门庭冷清宾客稀的光景--小型企业高攀不起,大型企业爱答不理. 一些管理者们理所当然地认为,商业是人脑的高阶竞争 ...

  8. 2、CPU是怎么实现运算的 ?

    我先来了解一下芯片构造,芯片由晶体管组成的.晶体管组成逻辑运算与或非电路. P型半导体的"P"表示正电的意思,取自英文Positive的第一个字母. N型半导体的"N&q ...

  9. 在不受支持的 Mac 上安装 macOS Monterey 12(OpenCore Patcher)

    一.介绍 本文通用于 macOS Big Sur 和 macOS Monterey,也可以视作笔者 早期文章 的升级版. 这一章节将介绍 macOS Monterey 的系统要求和不受支持的 Mac ...

  10. JAVA String、StringBuilder、和StringBuffer的区别,及如何使用

    目录 String类 一.String类的理解和创建对象 二.String类创建的方式 两种创建String对象的区别 测试题 三.String常用方法 四.StringBuffer类 1.Strin ...