bzoj2007/luoguP2046 海拔(平面图最小割转对偶图最短路)

题目描述:

bzoj  luogu

题解时间:

首先考虑海拔待定点的$h$都应该是多少

很明显它们都是$0$或$1$,并且所有$0$连成一块,所有$1$连成一块

只有海拔交界线对答案有贡献,变成了最小割

但是数据范围很明显不能直接跑网络流

由于这是一个平面图,所以根据套路想到:

平面图最小割=对偶图最小环=最外一块面积分成$S$和$T$跑最短路

从左上角往右下角画一条线把外面一块分成$S$和$T$之后建图。

但是要注意这张图上同一条边两个方向权值不同。

那么建边也按照相同方向,即对应向右下方向的边的新建边为$S$->$T$方向,向左上的反之。

然后就可以跑最短路了。

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;
typedef long long lint;
namespace LarjaIX
{
const int N=511;
int n,id[N][N];
struct sumireko{int to,ne,w;}e[N*N*8];
int he[N*N*2],ecnt;
void addline(int f,int t,int w)
{
e[++ecnt].to=t,e[ecnt].w=w;
e[ecnt].ne=he[f],he[f]=ecnt;
}
struct shion
{
int x;lint d;
shion(){}
shion(int x,lint d):x(x),d(d){}
bool operator < (const shion &a)const{return d>a.d;}
}stmp;
priority_queue<shion>q;
lint dis[N*N*2];
bool vis[N*N*2];
void dijkstra(int sp,int ep)
{
memset(dis,0x3f,sizeof(dis));
q.push(shion(sp,dis[sp]=0));
while(!q.empty())
{
stmp=q.top(),q.pop();
int x=stmp.x;
if(vis[x]) continue;vis[x]=1;
for(int i=he[x],t=e[i].to;i;i=e[i].ne,t=e[i].to)
{
if(dis[t]>dis[x]+e[i].w)
{
dis[t]=dis[x]+e[i].w;
q.push(shion(t,dis[t]));
}
}
}
printf("%lld\n",dis[ep]);
}
int wi;
int maid()
{
#ifdef debug
freopen("sample.in","r",stdin);
freopen("debug.out","w",stdout);
#endif
scanf("%d",&n);
for(int i=1;i<=n;i++)id[i][0]=id[n+1][i]=0,id[0][i]=id[i][n+1]=n*n+1;
for(int i=1;i<=n;i++)for(int j=1;j<=n;j++) id[i][j]=(i-1)*n+j;
for(int i=0;i<=n;i++)for(int j=1;j<=n;j++)
scanf("%d",&wi),addline(id[i+1][j],id[i][j],wi);
for(int i=1;i<=n;i++)for(int j=0;j<=n;j++)
scanf("%d",&wi),addline(id[i][j],id[i][j+1],wi);
for(int i=0;i<=n;i++)for(int j=1;j<=n;j++)
scanf("%d",&wi),addline(id[i][j],id[i+1][j],wi);
for(int i=1;i<=n;i++)for(int j=0;j<=n;j++)
scanf("%d",&wi),addline(id[i][j+1],id[i][j],wi);
dijkstra(0,n*n+1);
return 0;
}
}
int main(){return LarjaIX::maid();}

bzoj2007/luoguP2046 海拔(平面图最小割转对偶图最短路)的更多相关文章

  1. BZOJ 2007 海拔(平面图最小割转对偶图最短路)

    首先注意到,把一个点的海拔定为>1的数是毫无意义的.实际上,可以转化为把这些点的海拔要么定为0,要么定为1. 其次,如果一个点周围的点的海拔没有和它相同的,那么这个点的海拔也是可以优化的,即把这 ...

  2. BZOJ2007/LG2046 「NOI2010」海拔 平面图最小割转对偶图最短路

    问题描述 BZOJ2007 LG2046 题解 发现左上角海拔为 \(0\) ,右上角海拔为 \(1\) . 上坡要付出代价,下坡没有收益,所以有坡度的路越少越好. 所以海拔为 \(1\) 的点,和海 ...

  3. [BZOJ 2007] [Noi2010] 海拔 【平面图最小割(对偶图最短路)】

    题目链接:BZOJ - 2007 题目分析 首先,左上角的高度是 0 ,右下角的高度是 1.那么所有点的高度一定要在 0 与 1 之间.然而选取 [0, 1] 的任何一个实数,都可以用整数 0 或 1 ...

  4. BZOJ1001/LG4001 「ICPC Beijing2006」狼抓兔子 平面图最小割转对偶图最短路

    问题描述 BZOJ1001 LG4001 题解 平面图最小割=对偶图最短路 假设起点和终点间有和其他边都不相交的一条虚边. 如图,平面图的若干条边将一个平面划分为若干个图形,每个图形就是对偶图中的一个 ...

  5. BZOJ2007 [Noi2010]海拔 【平面图最小割转对偶图最短路】

    题目链接 BZOJ2007 题解 这是裸题啊,,要是考试真的遇到就好了 明显是最小割,而且是有来回两个方向 那么原图所有向右的边转为对偶图向下的边 向左的边转为向上 向下转为向左 向上转为向右 然后跑 ...

  6. bzoj1001/luogu4001 狼抓兔子 (最小割/平面图最小割转对偶图最短路)

    平面图转对偶图:先在原图中加一个s->t的边,然后对每个面建一个点,对每条分隔两个面的边加一条连接这两个面对应点的边,边权等于原边权. 然后从刚才加的s->t分割出来的两面对应的两个点跑最 ...

  7. 【Bzoj】1001狼抓兔子(平面图最小割转对偶图最短路)

    YEAH 题目链接 终于做对这道题啦    建图的艰辛难以言表- - 顺便说一句我队列转STL啦 狼抓兔子的地图符合平面图定义,于是将该图转成对偶图并求出对偶图的最短路即可. 这篇博客给了我极大的帮助 ...

  8. bzoj1001平面图最小割转对偶图最短路

    https://www.lydsy.com/JudgeOnline/problem.php?id=1001 很明显的求对偶图的最短路即可(由于特判写错了一直wa = = ) //#pragma com ...

  9. B20J_2007_[Noi2010]海拔_平面图最小割转对偶图+堆优化Dij

    B20J_2007_[Noi2010]海拔_平面图最小割转对偶图+堆优化Dij 题意:城市被东西向和南北向的主干道划分为n×n个区域.城市中包括(n+1)×(n+1)个交叉路口和2n×(n+1)条双向 ...

随机推荐

  1. Solution -「NOI.AC 省选膜你赛」union

    题目 题意简述   给定两颗树 \(A,B\),\(A\) 中的任一结点 \(u\) 与 \(B\) 中的任一结点 \(v\) 都有一个关系值 \(f(u,v)\),初始为 \(0\).再给出 \(q ...

  2. Error from server error dialing backend remote error tls internal error

    # kubectl exec -it mysql-master-8cfb64ff9-ct4dx -n prophet -- /bin/bash Error from server: error dia ...

  3. kubenetes部署prometheus+grafana

    文章目录 环境介绍 创建node-exporter 创建Prometheus 创建Grafana 测试 环境介绍 # 关于k8s的集群部署,可以查看我其他博客 [root@master ~]# cat ...

  4. Java并发基础之AbstractQueuedSynchronizer(AQS)

    AbstractQueuedSynchronizer同步器是实现JUC核心基础组件,因为 定义了一套多线程访问共享资源的同步器框架.前面几篇文章中JUC同步工具中都利用AQS构建自身的阻塞类.AQS解 ...

  5. 如何在TypeScript/JavaScript项目里引入MD5校验和

    摘要:MD5校验和则是其中一种数学算法,通常是使用工具对文件计算得出的一组32 个字符的十六进制字母和数字. 本文分享自华为云社区<TypeScript/JavaScript项目里如何做MD5校 ...

  6. XStream: Stream Processing Platform at Facebook

    这是Facebook在FlinkForward2021上的一个talk, 主题如下 在前面的论文中分析了Facebook的实时计算引擎的设计和选型的考量,里面提到了Facebook的实时计算引擎为了满 ...

  7. for循环,stream,parallelStream的性能区别

    for循环 for循环的性能随着数据量的增加性能也越来越差. 普通的循环不涉及较大的数据量,使用for循环更好. stream(串行流) stream在数据量小的情况下性能差,在数据量中.大的时候性能 ...

  8. LibOpenCM3(四) VSCode IDE 环境配置

    目录 LibOpenCM3(一) Linux下命令行开发环境配置 LibOpenCM3(二) 项目模板 Makefile分析 LibOpenCM3(三) .ld文件(连接器脚本)和startup代码说 ...

  9. Eclipse插件开发demo

    一.安装 1. 下载安装JDk 2. 下载安装PDE(Plugin-in Development Environment) 访问eclipse官网,点击Download,选择Download Pack ...

  10. FTP服务器日志解析

    转至:https://blog.csdn.net/weixin_34320724/article/details/92045244 FTP是老牌的文件传输协议,在网络中应用非常广泛.本节就Vsftp服 ...