flink-cdc同步mysql数据到kafka
本文首发于我的个人博客网站 等待下一个秋-Flink
什么是CDC?
CDC是(Change Data Capture 变更数据获取)的简称。核心思想是,监测并捕获数据库的变动(包括数据 或 数据表的插入INSERT、更新UPDATE、删除DELETE等),将这些变更按发生的顺序完整记录下来,写入到消息中间件中以供其他服务进行订阅及消费。

1. 环境准备
mysql
kafka 2.3
flink 1.13.5 on yarn
说明:如果没有安装hadoop,那么可以不用yarn,直接用flink standalone环境吧。
2. 下载下列依赖包
下面两个地址下载flink的依赖包,放在lib目录下面。
如果你的Flink是其它版本,可以来这里下载。
这里flink-sql-connector-mysql-cdc,前面一篇文章我用的mysq-cdc是1.4的,当时是可以的,但是今天我发现需要mysql-cdc-1.3.0了,否则,整合connector-kafka会有来冲突,目前mysql-cdc-1.3适用性更强,都可以兼容的。

如果你是更高版本的flink,可以自行https://github.com/ververica/flink-cdc-connectors下载新版mvn clean install -DskipTests 自己编译。

这是我编译的最新版2.2,传上去发现太新了,如果重新换个版本,我得去gitee下载源码,不然github速度太慢了,然后用IDEA编译打包,又得下载一堆依赖。我投降,我直接去网上下载了个1.3的直接用了。
我下载的jar包,放在flink的lib目录下面:

flink-sql-connector-kafka_2.11-1.13.5.jar
flink-sql-connector-mysql-cdc-1.3.0.jar
3. 启动flink-sql client
- 先在yarn上面启动一个application,进入flink13.5目录,执行:
bin/yarn-session.sh -d -s 1 -jm 1024 -tm 2048 -qu root.sparkstreaming -nm flink-cdc-kafka
- 进入flink sql命令行
bin/sql-client.sh embedded -s flink-cdc-kafka

4. 同步数据
这里有一张mysql表:
CREATE TABLE `product_view` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`user_id` int(11) NOT NULL,
`product_id` int(11) NOT NULL,
`server_id` int(11) NOT NULL,
`duration` int(11) NOT NULL,
`times` varchar(11) NOT NULL,
`time` datetime NOT NULL,
PRIMARY KEY (`id`),
KEY `time` (`time`),
KEY `user_product` (`user_id`,`product_id`) USING BTREE,
KEY `times` (`times`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
-- 样本数据
INSERT INTO `product_view` VALUES ('1', '1', '1', '1', '120', '120', '2020-04-24 13:14:00');
INSERT INTO `product_view` VALUES ('2', '1', '1', '1', '120', '120', '2020-04-24 13:14:00');
INSERT INTO `product_view` VALUES ('3', '1', '1', '3', '120', '120', '2020-04-24 13:14:00');
INSERT INTO `product_view` VALUES ('4', '1', '1', '2', '120', '120', '2020-04-24 13:14:00');
INSERT INTO `product_view` VALUES ('5', '8', '1', '1', '120', '120', '2020-05-14 13:14:00');
INSERT INTO `product_view` VALUES ('6', '8', '1', '2', '120', '120', '2020-05-13 13:14:00');
INSERT INTO `product_view` VALUES ('7', '8', '1', '3', '120', '120', '2020-04-24 13:14:00');
INSERT INTO `product_view` VALUES ('8', '8', '1', '3', '120', '120', '2020-04-23 13:14:00');
INSERT INTO `product_view` VALUES ('9', '8', '1', '2', '120', '120', '2020-05-13 13:14:00');
- 创建数据表关联mysql
CREATE TABLE product_view_source (
`id` int,
`user_id` int,
`product_id` int,
`server_id` int,
`duration` int,
`times` string,
`time` timestamp,
PRIMARY KEY (`id`) NOT ENFORCED
) WITH (
'connector' = 'mysql-cdc',
'hostname' = '192.168.1.2',
'port' = '3306',
'username' = 'bigdata',
'password' = 'bigdata',
'database-name' = 'test',
'table-name' = 'product_view'
);
这样,我们在flink sql client操作这个表相当于操作mysql里面的对应表。
- 创建数据表关联kafka
CREATE TABLE product_view_kafka_sink(
`id` int,
`user_id` int,
`product_id` int,
`server_id` int,
`duration` int,
`times` string,
`time` timestamp,
PRIMARY KEY (`id`) NOT ENFORCED
) WITH (
'connector' = 'upsert-kafka',
'topic' = 'flink-cdc-kafka',
'properties.bootstrap.servers' = '192.168.1.2:9092',
'properties.group.id' = 'flink-cdc-kafka-group',
'key.format' = 'json',
'value.format' = 'json'
);
这样,kafka里面的flink-cdc-kafka这个主题会被自动创建,如果想指定一些属性,可以提前手动创建好主题,我们操作表product_view_kafka_sink,往里面插入数据,可以发现kafka中已经有数据了。
- 同步数据

建立同步任务,可以使用sql如下:
insert into product_view_kafka_sink select * from product_view_source;
这个时候是可以退出flink sql-client的,然后进入flink web-ui,可以看到mysql表数据已经同步到kafka中了,对mysql进行插入,kafka都是同步更新的。

通过kafka控制台消费,可以看到数据已经从mysql同步到kafka了:

参考资料
https://ververica.github.io/flink-cdc-connectors/master/content/about.html
flink-cdc同步mysql数据到kafka的更多相关文章
- 使用maxwell实时同步mysql数据到kafka
一.软件环境: 操作系统:CentOS release 6.5 (Final) java版本: jdk1.8 zookeeper版本: zookeeper-3.4.11 kafka 版本: kafka ...
- 使用logstash同步MySQL数据到ES
使用logstash同步MySQL数据到ES 版权声明:[分享也是一种提高]个人转载请在正文开头明显位置注明出处,未经作者同意禁止企业/组织转载,禁止私自更改原文,禁止用于商业目的. https:// ...
- 使用Logstash来实时同步MySQL数据到ES
上篇讲到了ES和Head插件的环境搭建和配置,也简单模拟了数据作测试 本篇我们来实战从MYSQL里直接同步数据 一.首先下载和你的ES对应的logstash版本,本篇我们使用的都是6.1.1 下载后使 ...
- Logstash使用jdbc_input同步Mysql数据时遇到的空时间SQLException问题
今天在使用Logstash的jdbc_input插件同步Mysql数据时,本来应该能搜索出10条数据,结果在Elasticsearch中只看到了4条,终端中只给出了如下信息 [2017-08-25T1 ...
- 推荐一个同步Mysql数据到Elasticsearch的工具
把Mysql的数据同步到Elasticsearch是个很常见的需求,但在Github里找到的同步工具用起来或多或少都有些别扭. 例如:某记录内容为"aaa|bbb|ccc",将其按 ...
- centos7配置Logstash同步Mysql数据到Elasticsearch
Logstash 是开源的服务器端数据处理管道,能够同时从多个来源采集数据,转换数据,然后将数据发送到您最喜欢的“存储库”中.个人认为这款插件是比较稳定,容易配置的使用Logstash之前,我们得明确 ...
- flume实时采集mysql数据到kafka中并输出
环境说明 centos7(运行于vbox虚拟机) flume1.9.0(flume-ng-sql-source插件版本1.5.3) jdk1.8 kafka(版本忘了后续更新) zookeeper(版 ...
- flink-cdc同步mysql数据到hive
本文首发于我的个人博客网站 等待下一个秋-Flink 什么是CDC? CDC是(Change Data Capture 变更数据获取)的简称.核心思想是,监测并捕获数据库的变动(包括数据 或 数据表的 ...
- canal同步MySQL数据到ES6.X
背景: 最近一段时间公司做一个技术架构的更改,由于之前使用的solr和目前的业务不太匹配,具体原因不多说啦.所以要把数据放到Elasticsearch中进行快速的搜索,这是便产生了一个数据迁移的需求, ...
随机推荐
- 我不就是吃点肉,应该没事吧——爬取一座城市里的烤肉店数据(附完整Python爬虫代码)
写在前面的一点屁话: 对于肉食主义者,吃肉简直幸福感爆棚!特别是烤肉,看着一块块肉慢慢变熟,听着烤盘上"滋滋"的声响,这种期待感是任何其他食物都无法带来的.如果说甜点是" ...
- Linux YUM yum-utils 模块详解
yum-utils 详解 yum-utils是yum的工具包集合,由不同的作者开发,使yum使用起来更加方便和强大.包括:debuginfo-install,find-repos-of-install ...
- 浅议.NET遗留应用改造
浅议.NET遗留应用改造 TLDR:本文介绍了遗留应用改造中的一些常见问题,并对改造所能开展的目标.原则.策略进行了概述. 一.背景概述 1.概述 或许仅"遗留应用"这个标题就比较 ...
- charles(CA证书)的app端安装
在使用charles进行的app抓包的时候势必需要对他进行配置: 1. pc端: 第一步: http请求接收charles > proxy > proxy setting > por ...
- 递归概念&分类&注意事项和练习_使用递归计算1-n之间的和
递归:方法自己调用自己 递归的分类: 递归分为两种,直接递归和间接递归 直接递归称为方法自身调用自己 间接递归可以A方法调用B方法,B方法调用C方法,C方法调用A方法 注意事项: 递归一定要有条件限定 ...
- Android刷第三方Recovery &获取root权限
一.基础环境 Make sure your computer has working adb and fastboot. Setup instructions can be found here. E ...
- C++多文件源程序
一.多文件结构的源代码组织 一个C++程序开发工程(project)可以包含多个源程序文件,一个源程序文件(.cpp)可以包含多个函数.一个函数只能集中放在一个源程序文件中,不能将其定义代码拆开存放在 ...
- Solution -「简单 DP」zxy 讲课记实
魔法题位面级乱杀. 「JOISC 2020 Day4」治疗计划 因为是不太聪明的 Joker,我就从头开始理思路了.中途也会说一些和 DP 算法本身有关的杂谈,给自己的冗长题解找借口. 首先,治疗方案 ...
- 30行自己写并发工具类(Semaphore, CyclicBarrier, CountDownLatch)是什么体验?
30行自己写并发工具类(Semaphore, CyclicBarrier, CountDownLatch)是什么体验? 前言 在本篇文章当中首先给大家介绍三个工具Semaphore, CyclicBa ...
- github碰到的问题
下载问题 自己编译一下 mvn clear mvn compile mvn package 自己编译之后的文件,然后解压即可,第一次自己傻傻的,直接用源码跑,少报错! 项目预览问题 添加1s即可 下载 ...