上一场CF打到心态爆炸,这几天也没啥想干的

A Math Problem

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 0    Accepted Submission(s): 0

Problem Description
You are given a positive integer n, please count how many positive integers k satisfy kk≤n.
 
Input
There are no more than 50 test cases.

Each case only contains a positivse integer n in a line.

1≤n≤1018

 
Output
For each test case, output an integer indicates the number of positive integers k satisfy kk≤n in a line.
 
Sample Input
1
4
 
Sample Output
1
2
第一题就是直接枚举啊,肯定很快就到上限了,测一下最大的最好了
是输出15,我还傻傻输出错了,本来只考虑了位数

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll N=;
int main()
{
ll n;
while(~scanf("%lld",&n))
{
if(n>=N)
printf("15\n");
else
{
for(int k=; k<; k++)
{
ll s=;
for(int i=; i<k; i++)
s*=k;
if(s>n)
{
printf("%d\n",k-);
break;
}
}
}
}
return ;
}

Covering

Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 0    Accepted Submission(s): 0

Problem Description
Bob's school has a big playground, boys and girls always play games here after school.

To protect boys and girls from getting hurt when playing happily on the playground, rich boy Bob decided to cover the playground using his carpets.

Meanwhile, Bob is a mean boy, so he acquired that his carpets can not overlap one cell twice or more.

He has infinite carpets with sizes of 1×2 and 2×1, and the size of the playground is 4×n.

Can you tell Bob the total number of schemes where the carpets can cover the playground completely without overlapping?

 
Input
There are no more than 5000 test cases.

Each test case only contains one positive integer n in a line.

1≤n≤1018

 
Output
For each test cases, output the answer mod 1000000007 in a line.
 
Sample Input
1
2
 
Sample Output
1
5
经典骨牌覆盖,可以找到递推式
1 5 11 36 95 281 2245 6336 18061 51205 145601
a[n]=a[n-1]+5*a[n-2]+a[n-3]-a[n-4]; 
 
#include <stdio.h>
#include <string.h>
const int MD=1e9+;
typedef long long LL;
struct matrix
{
LL mat[][];
};
matrix matmul(matrix a,matrix b,int n)
{
int i,j,k;
matrix c;
memset(c.mat,,sizeof(c.mat));
for(i=; i<n; i++)
{
for(j=; j<n; j++)
{
for(k=; k<n; k++)
{
c.mat[i][j]=(c.mat[i][j]+a.mat[i][k]*b.mat[k][j])%MD;
}
}
}
return c;
}
matrix matpow(matrix a,LL k,int n)
{
matrix b;
int i;
memset(b.mat,,sizeof(b.mat));
for(i=; i<n; i++) b.mat[i][i]=;
while(k)
{
if(k&) b=matmul(a,b,n);
a=matmul(a,a,n);
k>>=;
}
return b;
}
int main()
{
LL k;
matrix a,b;
memset(a.mat,,sizeof(a.mat));
memset(b.mat,,sizeof(b.mat));
a.mat[][]=,a.mat[][]=,a.mat[][]=;
b.mat[][]=,b.mat[][]=,b.mat[][]=,b.mat[][]=-;
b.mat[][]=,b.mat[][]=,b.mat[][]=;
while(~scanf("%lld",&k))
{
printf("%lld\n",(matmul(matpow(b,k,),a,).mat[][]+MD)%MD);
}
return ;
}

CS Course

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 0    Accepted Submission(s): 0

Problem Description
Little A has come to college and majored in Computer and Science.

Today he has learned bit-operations in Algorithm Lessons, and he got a problem as homework.

Here is the problem:

You are giving n non-negative integers a1,a2,⋯,an, and some queries.

A query only contains a positive integer p, which means you 
are asked to answer the result of bit-operations (and, or, xor) of all the integers except ap.

 
Input
There are no more than 15 test cases.

Each test case begins with two positive integers n and p
in a line, indicate the number of positive integers and the number of queries.

2≤n,q≤105

Then n non-negative integers a1,a2,⋯,an follows in a line, 0≤ai≤109 for each i in range[1,n].

After that there are q positive integers p1,p2,⋯,pqin q lines, 1≤pi≤n for each i in range[1,q].

 
Output
For each query p, output three non-negative integers indicates the result of bit-operations(and, or, xor) of all non-negative integers except ap in a line.
 
Sample Input
3 3
1 1 1
1
2
3
 
Sample Output
1 1 0
1 1 0
1 1 0

异或最简单,再异或一次就好了

所以按位存储了

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1e5+;
int a[N],b[N];
int main()
{
int n,m;
while(~scanf("%d%d",&n,&m))
{
memset(b,,sizeof(b));
int Xor=,And=0xffffffff,Or=;
for(int i=; i<=n; i++)
{
int x;
scanf("%d",&x);
a[i]=x;
And&=x;
Or|=x;
Xor^=x;
for(int j=; x; j++,x>>=)
b[j]+=x%;
}
while(m--)
{
int q;
scanf("%d",&q);
q=a[q];
int A=And,O=Or,X=Xor;
X=X^q;
for(int j=; j<=; j++,q>>=)
{
if(b[j]==n-&&q%==)A+=(<<j);
if(b[j]==&&q%)O-=(<<j);
}
printf("%d %d %d\n",A,O,X);
}
}
return

Duizi and Shunzi

Nike likes playing cards and makes a problem of it.

Now give you n integers, ai(1≤i≤n)ai(1≤i≤n)

We define two identical numbers (eg: 2,22,2) a Duizi, 
and three consecutive positive integers (eg: 2,3,42,3,4) a Shunzi.

Now you want to use these integers to form Shunzi and Duizi as many as possible.

Let s be the total number of the Shunzi and the Duizi you formed.

Try to calculate max(s)max(s).

Each number can be used only once. 

InputThe input contains several test cases.

For each test case, the first line contains one integer n(1≤n≤1061≤n≤106). 
Then the next line contains n space-separated integers aiai (1≤ai≤n1≤ai≤n) 
OutputFor each test case, output the answer in a line. 
Sample Input

7
1 2 3 4 5 6 7
9
1 1 1 2 2 2 3 3 3
6
2 2 3 3 3 3
6
1 2 3 3 4 5

Sample Output

2
4
3
2

Hint

Case 1(1,2,3)(4,5,6)

Case 2(1,2,3)(1,1)(2,2)(3,3)

Case 3(2,2)(3,3)(3,3)

Case 4(1,2,3)(3,4,5)

这个题看起来很简单,问你最多可形成多少个对子和顺子

可是有坑啊,可以按照对子打,也可以按照顺子打,我当然按照对子打了,但是按照对子打可能我的顺子就没了,所以我首先是要打足够多的牌

比如我往下贪心的时候,如果第二张恰好是对子,我贪心就亏了,但是我下一张正好三张我肯定就要了这个顺子

所以就是记录顺子和找对子了

#include <stdio.h>
#include <string.h>
const int N=1e5+;
int a[N];
int main()
{
int n;
while(~scanf("%d",&n))
{
memset(a,,sizeof(int)*(n+));
for(int i=; i<n; i++)
{
int x;
scanf("%d",&x);
a[x]++;
}
int ans=;
for(int i=; i<n-; i++)
{
ans+=a[i]/;
if(a[i]&&&a[i+]&&&a[i+])
{
ans++;
a[i+]--;
a[i+]--;
}
}
ans+=a[n-]/+a[n]/;
printf("%d\n",ans);
}
return ;
}

2017ACM/ICPC广西邀请赛-重现赛(感谢广西大学)的更多相关文章

  1. 2017ACM/ICPC广西邀请赛-重现赛 1007.Duizi and Shunzi

    Problem Description Nike likes playing cards and makes a problem of it. Now give you n integers, ai( ...

  2. 2017ACM/ICPC广西邀请赛-重现赛 1010.Query on A Tree

    Problem Description Monkey A lives on a tree, he always plays on this tree. One day, monkey A learne ...

  3. 2017ACM/ICPC广西邀请赛-重现赛 1004.Covering

    Problem Description Bob's school has a big playground, boys and girls always play games here after s ...

  4. 2017ACM/ICPC广西邀请赛-重现赛

    HDU 6188 Duizi and Shunzi 链接:http://acm.hdu.edu.cn/showproblem.php?pid=6188 思路: 签到题,以前写的. 实现代码: #inc ...

  5. 2017ACM/ICPC广西邀请赛-重现赛 1001 A Math Problem

    2017-08-31 16:48:00 writer:pprp 这个题比较容易,我用的是快速幂 写了一次就过了 题目如下: A Math Problem Time Limit: 2000/1000 M ...

  6. 2017ACM/ICPC广西邀请赛-重现赛1005 CS course

    2017-08-31 16:19:30 writer:pprp 这道题快要卡死我了,队友已经告诉我思路了,但是做题速度很缓慢,很费力,想必是因为之前 的训练都是面向题解编程的缘故吧,以后不能这样了,另 ...

  7. HDU 6191 2017ACM/ICPC广西邀请赛 J Query on A Tree 可持久化01字典树+dfs序

    题意 给一颗\(n\)个节点的带点权的树,以\(1\)为根节点,\(q\)次询问,每次询问给出2个数\(u\),\(x\),求\(u\)的子树中的点上的值与\(x\)异或的值最大为多少 分析 先dfs ...

  8. 2017ACM/ICPC广西邀请赛

    A.A Math Problem #include <bits/stdc++.h> using namespace std; typedef long long ll; inline ll ...

  9. 2017ACM/ICPC广西邀请赛 Duizi and Shunzi

    题意:就是一个集合分开,有两种区分 对子:两个相同数字,顺子:连续三个不同数字,问最多分多少个 解法:贪心,如果当前数字不构成顺子就取对子 /2,如果可以取顺子,那么先取顺子再取对子 #include ...

随机推荐

  1. 绘制复杂的原理图元件库用于cadence(二)

    绘制Xilinx XC7K325TFFG900 kintex-7 FPGA元件 1.在官网搜索“pin out”往下拉一下就能看见 2.点击进入选择相应型号 3.打开之后是类似txt格式的FFG900 ...

  2. 12.JAVA-基本数据类型的包装类操作

    1.基本数据类型的包装类 java是一个面向对象编程语言,也就是说一切操作都要用对象的形式进行.但是有个矛盾: 基本数据类型(char,int,double等)不具备对象特性(不携带属性和方法) 这样 ...

  3. phpmyadmin 出现Table 'root.pma_table_uiprefs' doesn't exist

    原文链接:http://zhidao.baidu.com/link?url=ugBKDds94yxWhh_IZ6rZWZYSd2nO555EZ1WMClXRrqL0aKLc-HPDrZVSKZyDaD ...

  4. Django的学习需要掌握的一些基础和初步搭建自己的框架

    一.Django的学习需要掌握的一些基础 第一个需要注意的点:客户端发送过来的数据结构组成: 第二个需要注意的点:动态网页和静态网页 静态网页:用户发送请求,服务端找到对应的静态文件返回给浏览器,静态 ...

  5. codeforces727C(交互)

    题意 $n$个数,初始时不知道他们的值. 每次可以询问两个数的和,在$n$次询问内确定他们的值 $n \leqslant 5000$ Sol 首先询问出$1, 2$,$1, 3$,$2, 3$ 解个方 ...

  6. Objective-C Protocols

    Objective-C allows you to define protocols, which declare the methods expected to be used for a part ...

  7. 大数据freestyle: 共享单车轨迹数据助力城市合理规划自行车道

    编者按:近年来,异军突起的共享单车极大地解决了人们共同面临的“最后一公里”难题,然而,共享单车发展迅猛,自行车道建设却始终没有能够跟上脚步.幸运的是摩拜单车大量的轨迹数据为我们提供了一种新的思路:利用 ...

  8. Monkey安装和使用介绍

    安装步骤1)安装sdk环境在系统环境变量中配置 ANDROID_HOMED:\sdk PATH%ANDROID_HOME%\tools;%ANDROID_HOME%\platform-tools;%A ...

  9. 洛谷 P1340 兽径管理

    题目描述 约翰农场的牛群希望能够在 N 个(1<=N<=200) 草地之间任意移动.草地的编号由 1到 N.草地之间有树林隔开.牛群希望能够选择草地间的路径,使牛群能够从任一 片草地移动到 ...

  10. ubuntu 14.04 安装mysql,并配置远程连接和中文乱码

    1. 安装MySQL的jar root@computer-PowerEdge-T30:~# sudo apt-get install mysql-server mysql-client在本次安装中,根 ...