Problem Description
After inventing Turing Tree, 3xian always felt boring when solving problems about intervals, because Turing Tree could easily have the solution. As well, wily 3xian made lots of new problems about intervals. So, today, this sick thing happens again...

Now given a sequence of N
numbers A1, A2, ..., AN and a number of Queries(i, j) (1≤i≤j≤N). For
each Query(i, j), you are to caculate the sum of distinct values in the
subsequence Ai, Ai+1, ..., Aj.

 
Input
The first line is an integer T (1 ≤ T ≤ 10), indecating the number of testcases below.
For each case, the input format will be like this:
* Line 1: N (1 ≤ N ≤ 30,000).
* Line 2: N integers A1, A2, ..., AN (0 ≤ Ai ≤ 1,000,000,000).
* Line 3: Q (1 ≤ Q ≤ 100,000), the number of Queries.
* Next Q lines: each line contains 2 integers i, j representing a Query (1 ≤ i ≤ j ≤ N).
 
Output
For each Query, print the sum of distinct values of the specified subsequence in one line.
 
Sample Input
2
3
1 1 4
2
1 2
2 3
5
1 1 2 1 3
3
1 5
2 4
3 5
 
Sample Output
1
5
6
3
6

这个题要求区间内不同值的和,一开始没有任何思路,看了题解,原来需要对查询进行离线操作。

因为需要求区间内互异值的和,对于一个固定的区间的话,自然只需要对于相同的值只留一个,其他置零即可。

但是对于动态的查询区间,保留的那个值的位置相对关键。

通过对查询的区间进行排序可以讲区间有序的排列(以区间的右端点递增排序)。

因为这样的话,对于这个数列,从第一个逐个插入,那么区间是[1, 1]->[1, 2]->[1, 3]……这样生成的,如果我们对于a[i],把之前出现过的a[i]都置零,这样此时对于已生成的区间[1, i],我们查询区间和[k, i]的时候(因为区间是按照右端点有序查询的),必然对于任意值p,都是先包含离i最近的那个p,才会包含前面的p,而前面的p已经被置零,故不会加入计算。而离i最近的p又会加入计算,不会影响结果。

所以这样边生成区间[1, i],边对于[k, i]区间查询。对于之前出现过的a[i]置零,便可以达到查询效果。当然最好输出的结果是按照题目要求的查询顺序输出的,这里采用了保存在sum数组中。

不过这里还有一点就是,如何对于之前的a[i]置零,此处采用了map,map里保存了最右端的a[i]的脚标,这样不断更新即可。

代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <set>
#include <map>
#include <queue>
#include <string>
#define LL long long using namespace std; //线段树
//区间每点增值,求区间和
const int maxn = 30005;
struct node
{
int lt, rt;
LL val;
}tree[4*maxn]; //向上更新
void PushUp(int id)
{
tree[id].val = tree[id<<1].val + tree[id<<1|1].val;
} //建立线段树
void Build(int lt, int rt, int id)
{
tree[id].lt = lt;
tree[id].rt = rt;
tree[id].val = 0;//每段的初值,根据题目要求
if (lt == rt)
{
//tree[id].val = 1;
return;
}
int mid = (lt + rt) >> 1;
Build(lt, mid, id<<1);
Build(mid+1, rt, id<<1|1);
//PushUp(id);
} //更改区间内某个点的值
void Change(int lt, int rt, int id, int to)
{
if (lt <= tree[id].lt && rt >= tree[id].rt)
{
tree[id].val = to;
return;
}
int mid = (tree[id].lt + tree[id].rt) >> 1;
if (lt <= mid)
Change(lt, rt, id<<1, to);
if (rt > mid)
Change(lt, rt, id<<1|1, to);
PushUp(id);
} //查询某段区间内的he
LL Query(int lt, int rt, int id)
{
if (lt <= tree[id].lt && rt >= tree[id].rt)
return tree[id].val;
int mid = (tree[id].lt + tree[id].rt) >> 1;
LL ans = 0;
if (lt <= mid)
ans += Query(lt, rt, id<<1);
if (rt > mid)
ans += Query(lt, rt, id<<1|1);
return ans;
} struct qq
{
int from, to;
int id;
}q[100005]; bool cmp(qq a, qq b)
{
return a.to < b.to;
} int a[30005], n, m;
LL sum[100005]; void Work()
{
Build(1, n, 1);
map<int, int> s;
int t, now = 0;
for (int i = 1; i <= n; ++i)
{
t = s[a[i]];
if (t == 0)
{
Change(i, i, 1, a[i]);
s[a[i]] = i;
}
else
{
Change(t, t, 1, 0);
Change(i, i, 1, a[i]);
s[a[i]] = i;
}
for (;now < m && q[now].to == i; now++)
{
sum[q[now].id] = Query(q[now].from, q[now].to, 1);
}
}
} void Output()
{
for (int i = 0; i < m; ++i)
printf("%I64d\n", sum[i]);
} int main()
{
//freopen("test.in", "r", stdin);
int T;
scanf("%d", &T);
for (int times = 0; times < T; ++times)
{
scanf("%d", &n);
for (int i = 1; i <= n; ++i)
scanf("%d", &a[i]);
scanf("%d", &m);
for (int i = 0; i < m; ++i)
{
scanf("%d%d", &q[i].from, &q[i].to);
q[i].id = i;
}
sort(q, q+m, cmp);
Work();
Output();
}
return 0;
}

ACM学习历程——HDU3333 Turing Tree(线段树 && 离线操作)的更多相关文章

  1. ACM学习历程—HDU 5289 Assignment(线段树 || RMQ || 单调队列)

    Problem Description Tom owns a company and he is the boss. There are n staffs which are numbered fro ...

  2. ACM学习历程—HDU 2795 Billboard(线段树)

    Description At the entrance to the university, there is a huge rectangular billboard of size h*w (h ...

  3. ACM学习历程——POJ3321 Apple Tree(搜索,线段树)

          Description There is an apple tree outside of kaka's house. Every autumn, a lot of apples will ...

  4. HDU 3333 Turing Tree 线段树+离线处理

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3333 Turing Tree Time Limit: 6000/3000 MS (Java/Othe ...

  5. ACM学习笔记:可持久化线段树

    title : 可持久化线段树 date : 2021-8-18 tags : 数据结构,ACM 可持久化线段树 可以用来解决线段树存储历史状态的问题. 我们在进行单点修改后,线段树只有logn个(一 ...

  6. HDU 3333 Turing Tree (线段树)

    Turing Tree Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tota ...

  7. SPOJ D-query && HDU 3333 Turing Tree (线段树 && 区间不相同数个数or和 && 离线处理)

    题意 : 给出一段n个数的序列,接下来给出m个询问,询问的内容SPOJ是(L, R)这个区间内不同的数的个数,HDU是不同数的和 分析 : 一个经典的问题,思路是将所有问询区间存起来,然后按右端点排序 ...

  8. HDU3333 Turing Tree 离线树状数组

    题意:统计一段区间内不同的数的和 分析:排序查询区间,离线树状数组 #include <cstdio> #include <cmath> #include <cstrin ...

  9. HDU3333 Turing Tree(线段树)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=3333 Description After inventing Turing Tree, 3x ...

随机推荐

  1. 【甘道夫】Ubuntu14 server + Hadoop2.2.0环境下Sqoop1.99.3部署记录

    第一步.下载.解压.配置环境变量: 官网下载sqoop1.99.3 http://mirrors.cnnic.cn/apache/sqoop/1.99.3/ 将sqoop解压到目标文件夹,我的是 /h ...

  2. Android推断是否有sd卡

    推断手机上是否有SD卡存在.作为经常用法,写到工具类里,用时直接调用.代码例如以下: public static boolean hasSdcard(){ String state = Environ ...

  3. 网络工具的瑞士军刀netcat

    这是一个聒噪的夜晚,假设要给出个原因.可能是由于尽管我认为西班牙不纯粹,可是怎么也不至于干为人家搭台面自己不唱戏的角色吧..结束以后.我认为该玩一下素有网络瑞士军刀之称谓的netcat了. 尽管瑞士军 ...

  4. hashCode与equals的作用与区别及应当注意的细节

    最近去面试了几家公司,被问到hashCode的作用,虽然回答出来了,但是自己还是对hashCode和equals的作用一知半解的,所以决定把它们研究一下. 以前写程序一直没有注意hashCode的作用 ...

  5. 2009-04-19 22:40 SQL SERVER游标的讲解

    游标和游标的优点 在数据库中,游标是一个十分重要的概念.游标提供了一种对从表中检索出的数据进行操作的灵活手段,就本质而言,游标实际上是一种能从包括多条数据记录的结 果集中每次提取一条记录的机制.游标总 ...

  6. OpenCV 入门示例之三:AVI 视频播放控制

    前言 在前文中给出了一个非常简短的视频播放程序,但它没有实现常规视频播放器中的播放滚动条功能,本文对此视频播放器程序加以改进,实现此功能. 滚动条的实现思路 滚动条的功能实质上就是从一帧跳跃到另外一帧 ...

  7. WPF实现带全选复选框的列表控件

    本文将说明如何创建一个带全选复选框的列表控件.其效果如下图: 这个控件是由一个复选框(CheckBox)与一个 ListView 组合而成.它的操作逻辑: 当选中“全选”时,列表中所有的项目都会被选中 ...

  8. ASP.NET动态网站制作(10)-- JQ(2)

    前言:jq的第二节课. 内容: 1.管理选择结果:  (1)获取元素个数:$("img").size():获取页面中所有“img”个数:  (2)提取元素:$("img[ ...

  9. Webpack探索【12】--- externals详解

    本文主要讲externals相关内容. https://segmentfault.com/a/1190000012113011

  10. UVa 10828 Back to Kernighan-Ritchie 高斯消元+概率DP

    题目来源:UVa 10828 Back to Kernighan-Ritchie 题意:从1開始 每次等概率从一个点到和他相邻的点 有向 走到不能走停止 求停止时每一个点的期望 思路:写出方程消元 方 ...