1497: [NOI2006]最大获利

Time Limit: 5 Sec  Memory Limit: 64 MB
Submit: 4572  Solved: 2239
[Submit][Status][Discuss]

Description

新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战。THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前夜,需要做太多的准备工作,仅就站址选择一项,就需要完成前期市场研究、站址勘测、最优化等项目。在前期市场调查和站址勘测之后,公司得到了一共N个可以作为通讯信号中转站的地址,而由于这些地址的地理位置差异,在不同的地方建造通讯中转站需要投入的成本也是不一样的,所幸在前期调查之后这些都是已知数据:建立第i个通讯中转站需要的成本为Pi(1≤i≤N)。另外公司调查得出了所有期望中的用户群,一共M个。关于第i个用户群的信息概括为Ai, Bi和Ci:这些用户会使用中转站Ai和中转站Bi进行通讯,公司可以获益Ci。(1≤i≤M, 1≤Ai, Bi≤N) THU集团的CS&T公司可以有选择的建立一些中转站(投入成本),为一些用户提供服务并获得收益(获益之和)。那么如何选择最终建立的中转站才能让公司的净获利最大呢?(净获利 = 获益之和 - 投入成本之和)

Input

输入文件中第一行有两个正整数N和M 。第二行中有N个整数描述每一个通讯中转站的建立成本,依次为P1, P2, …, PN 。以下M行,第(i + 2)行的三个数Ai, Bi和Ci描述第i个用户群的信息。所有变量的含义可以参见题目描述。

Output

你的程序只要向输出文件输出一个整数,表示公司可以得到的最大净获利。

Sample Input

5 5
1 2 3 4 5
1 2 3
2 3 4
1 3 3
1 4 2
4 5 3

Sample Output

4

HINT

【样例说明】选择建立1、2、3号中转站,则需要投入成本6,获利为10,因此得到最大收益4。【评分方法】本题没有部分分,你的程序的输出只有和我们的答案完全一致才能获得满分,否则不得分。【数据规模和约定】 80%的数据中:N≤200,M≤1 000。 100%的数据中:N≤5 000,M≤50 000,0≤Ci≤100,0≤Pi≤100。

Source

分析:

裸的最大权闭合子图...

把每个中转站看成负权点,顾客群看成正权点,然后每个顾客向中转站连边...

代码:

 #include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
//by NeighThorn
#define inf 0x3f3f3f3f
using namespace std; const int maxn=+,maxm=+; int n,m,S,T,cnt,sum,hd[maxn],fl[maxm],to[maxm],nxt[maxm],pos[maxn]; inline bool bfs(void){
memset(pos,-,sizeof(pos));
int head=,tail=,q[maxn];
q[]=S,pos[S]=;
while(head<=tail){
int top=q[head++];
for(int i=hd[top];i!=-;i=nxt[i])
if(pos[to[i]]==-&&fl[i])
pos[to[i]]=pos[top]+,q[++tail]=to[i];
}
return pos[T]!=-;
} inline int find(int v,int f){
if(v==T)
return f;
int res=,t;
for(int i=hd[v];i!=-&&f>res;i=nxt[i])
if(pos[to[i]]==pos[v]+&&fl[i])
t=find(to[i],min(f-res,fl[i])),fl[i]-=t,fl[i^]+=t,res+=t;
if(!res)
pos[v]=-;
return res;
} inline int dinic(void){
int res=,t;
while(bfs())
while(t=find(S,inf))
res+=t;
return res;
} inline void add(int s,int x,int y){
fl[cnt]=s;to[cnt]=y;nxt[cnt]=hd[x];hd[x]=cnt++;
fl[cnt]=;to[cnt]=x;nxt[cnt]=hd[y];hd[y]=cnt++;
} signed main(void){
scanf("%d%d",&n,&m);T=n+m+;
memset(hd,-,sizeof(hd));S=sum=;
for(int i=,x;i<=n;i++)
scanf("%d",&x),add(x,i,T);
for(int i=,s,x,y;i<=m;i++)
scanf("%d%d%d",&x,&y,&s),add(inf,i+n,x),add(inf,i+n,y),add(s,S,i+n),sum+=s;
printf("%d\n",sum-dinic());
return ;
}//Cap ou pas cap. Cap.

By NeighThorn

BZOJ 1497: [NOI2006]最大获利的更多相关文章

  1. BZOJ 1497: [NOI2006]最大获利 最小割

    1497: [NOI2006]最大获利 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1497 Description 新的技术正冲击着手 ...

  2. BZOJ 1497: [NOI2006]最大获利( 最大流 )

    下午到周六早上是期末考试...但是我还是坚守在机房....要挂的节奏啊.... 这道题就是网络流 , 建图后就最大流跑啊跑啊跑... --------------------------------- ...

  3. BZOJ 1497: [NOI2006]最大获利(最大权闭合子图)

    1497: [NOI2006]最大获利 Time Limit: 5 Sec  Memory Limit: 64 MB Description 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机 ...

  4. BZOJ 1497 [NOI2006]最大获利 ——网络流

    [题目分析] 最大权闭合子图. S到集合1容量为获利的大小,集合2到T为所需要付出的相反数. 然后求出最大流,然后用总的获利相减即可. [代码] #include <cstdio> #in ...

  5. BZOJ 1497: [NOI2006]最大获利(最大权闭合图)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1497 题意: 思路: 论文题,只要看过论文的话就是小菜一碟啦~ 每个用户群i作为一个结点分别向相应的 ...

  6. BZOJ.1497.[NOI2006]最大获利(最小割 最大权闭合子图Dinic)

    题目链接 //裸最大权闭合子图... #include<cstdio> #include<cctype> #include<algorithm> #define g ...

  7. bzoj 1497 [NOI2006]最大获利【最大权闭合子图+最小割】

    不要被5s时限和50000点数吓倒!大胆网络流!我一个5w级别的dinic只跑了1s+! 看起来没有最大权闭合子图的特征--限制,实际上还是有的. 我们需要把中转站看成负权点,把p看成点权,把客户看成 ...

  8. 1497: [NOI2006]最大获利(最大权闭合子图)

    1497: [NOI2006]最大获利 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 5503  Solved: 2673 Description 新的技 ...

  9. 最大权闭合图 && 【BZOJ】1497: [NOI2006]最大获利

    http://www.lydsy.com/JudgeOnline/problem.php?id=1497 最大权闭合图详细请看胡伯涛论文<最小割模型在信息学竞赛中的应用>,我在这里截图它的 ...

随机推荐

  1. 自定义配置Webpack和Babel配置

    在使用ant-design-vue的包时样式是可以生效的但是如果我需要用到less文件时会报一个异常 当然这个异常其实很清晰的说明了什么问题看错误信息里面有issues地址,看来问题不止我们遇见了可以 ...

  2. pycharm在同目录下import,pycharm会提示错误,但是可以运行

    原因是:    pycharm不会将当前文件目录自动加入自己的sourse_path. 解决方案:右键make_directory as-->sources path将当前工作的文件夹加入sou ...

  3. tomcat修改默认主页, 前段项目放到tomcat下,浏览器输入ip加端口后,直接到项目主页

    1,将 项目 放到 tomcat 的webapps 文件夹下 2, 修改conf 下的 server.xml , 找到 <Host name="localhost" appB ...

  4. L2TP用户添加和删除、搜索脚本

    #!/bin/bash #author Template . /etc/init.d/functions DATE_TIME=$(date +%F-%T) FILE_PATH='/etc/ppp/ch ...

  5. ActiveMQ发布-订阅消息模式(同点对点模式的区别)

    点对点与发布订阅最初是由JMS定义的.这两种模式主要区别或解决的问题就是发送到队列的消息能否重复消费(多订阅) 点对点: 消息生产者生产消息发送到queue中,然后消息消费者从queue中取出并且消费 ...

  6. python之随机数random模块

    random模块:用于生成随机数 import random #random模块:用于生成随机数 li = [] for i in range(7): r = random.randrange(0,3 ...

  7. 在F12 控制台输入,可执行jquery操作

    <!-- 控制台执行jquery -->var importJs=document.createElement('script') //在页面新建一个script标签importJs.se ...

  8. Redis实现之事件

    事件 Redis服务器是一个事件驱动程序,服务器需要处理以下两类事情: 文件事件(file event):Redis服务器通过套接字与客户端(或者其他Redis服务器)进行连接,而文件事件就是服务器对 ...

  9. TCP/IP网络编程之进程间通信

    进程间通信基本概念 进程间通信意味着两个不同进程间可以交换数据,为了完成这一点,操作系统中应提供两个进程可以同时访问的内存空间.但我们知道,进程具有完全独立的内存结构,就连通过fork函数创建的子进程 ...

  10. tomcat缓存

    问题描述: 一个用到struts2框架的web项目,由于在struts.xml中少配置了一个action,导致项目运行时报异常.将原本好的代码复旧,重启tomcat服务,第一次加载程序没问题,再刷新时 ...