题意:

有 $n$ 个包,设计最少的物品体积(可重集),使得

1. 对于任意一个总体积不超过给定 $m$ 的物体集合有其体积和 恰好等于一个包的容量。

2.对于每一个包,存在一个物品集合能恰好装满它。

解法:

考虑对于包的容量集合建立多项式 $A(x)$

注意到显然答案中的物品体积取自 $n$ 个包的容量。

那么根据题意有 条件2 <-> [$A(x)$中系数i为零 ->  $A^2(x)$ 中系数i为零]

proof : 在只考虑系数是否为零的合法情况下,$A^k(x)$ 随着 $k$ 的增大而变小。

从而有取出 $A^2$ 相对 $A$ 所有丢失的项作为答案即可。

#include <bits/stdc++.h>

#define PI acos(-1)

const int N = ;

using namespace std;

struct EX
{
double real,i;
EX operator+(const EX tmp)const{return (EX){real+tmp.real, i+tmp.i};};
EX operator-(const EX tmp)const{return (EX){real-tmp.real, i-tmp.i};};
EX operator*(const EX tmp)const{return (EX){real*tmp.real - i*tmp.i, real*tmp.i + i*tmp.real};};
}; int R[N<<]; void DFT(EX a[],int n,int tp_k)
{
for(int i=;i<n;i++) if(i<R[i]) swap(a[i],a[R[i]]);
for(int d=;d<n;d<<=)
{
EX wn = (EX){cos(PI/d), sin(PI/d)*tp_k};
for(int i=;i<n;i += (d<<))
{
EX wt = (EX){,};
for(int k=;k<d;k++, wt = wt*wn)
{
EX A0 = a[i+k], A1 = wt * a[i+k+d];
a[i+k] = A0+A1;
a[i+k+d] = A0-A1;
}
}
}
if(tp_k==-)
for(int i=;i<n;i++) a[i] = (EX){a[i].real/n, a[i].i/n};
} int n,m,a[N],b[N],ans[N];
EX A[N<<];
bool v[N],flag[N];
bitset<N> f; int main()
{
scanf("%d%d",&n,&m);
m++;
for(int i=;i<=n;i++) scanf("%d",&a[i]), v[a[i]]=;
int L = ,tot;
while((<<L)<m+m) L++;
tot = (<<L);
for(int i=;i<tot;i++) R[i]=(R[i>>]>>)|((i&)<<(L-));
for(int i=;i<=n;i++) A[a[i]] = (EX){,};
DFT(A,tot,);
for(int i=;i<tot;i++) A[i] = A[i]*A[i];
DFT(A,tot,-);
bool ansv = ;
int t = ;
for(int i=;i<m;i++)
{
if(A[i].real>0.5 && !v[i]) ansv = ;
else if(v[i] && A[i].real<0.5) b[++t] = i;
}
if(!ansv) puts("NO");
else
{
puts("YES");
printf("%d\n",t);
for(int i=;i<=t;i++) printf("%d ",b[i]);
printf("\n");
}
return ;
}

Ladies' Shop的更多相关文章

  1. codeforces 286 E. Ladies' Shop (FFT)

    E. Ladies' Shop time limit per test 8 seconds memory limit per test 256 megabytes input standard inp ...

  2. codeforces 286E Ladies' Shop

    题目大意:n个小于等于m的数,现在你需要在[1,m]中选择若干个数,使得选出的数能组成的所有数正好与n个数相同,给出最少要选多少个数. 题目分析: 结论一:选择的若干个数一定在n个数中. 证明:否则的 ...

  3. CodeForces 286E Ladies' Shop 多项式 FFT

    原文链接http://www.cnblogs.com/zhouzhendong/p/8781889.html 题目传送门 - CodeForces 286E 题意 首先,给你$n$个数(并告诉你$m$ ...

  4. [CF286E] Ladies' shop

    Description 给出 \(n\) 个 \(\leq m\) 且不同的数 \(a_1,\dots,a_n\),现在要求从这 \(n\) 个数中选出最少的数字,满足这 \(n\) 个数字都可以由选 ...

  5. CF286E Ladies' Shop FFT

    题目链接 读完题后,我们发现如下性质: 在合法且和不超过 $m$ 的情况下,如果 $a_{i}$ 出现,则 $a_{i}$ 的倍数也必出现. 所以如果合法,只要对所有数两两结合一次就能得到所有 $a_ ...

  6. Codeforces 286E - Ladies' Shop(FFT)

    Codeforces 题面传送门 & 洛谷题面传送门 好久没刷过 FFT/NTT 的题了,写篇题解罢( 首先考虑什么样的集合 \(T\) 符合条件.我们考察一个 \(x\in S\),根据题意 ...

  7. 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/常用套路【入门】

    原文链接https://www.cnblogs.com/zhouzhendong/p/Fast-Fourier-Transform.html 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/ ...

  8. Codeforces Round #176 (Div. 1 + Div. 2)

    A. IQ Test 模拟. B. Pipeline 贪心. C. Lucky Permutation 每4个数构成一个循环. 当n为偶数时,n=4k有解:当n为奇数时,n=4k+1有解. D. Sh ...

  9. codeforces 632+ E. Thief in a Shop

    E. Thief in a Shop time limit per test 5 seconds memory limit per test 512 megabytes input standard ...

随机推荐

  1. C语言-回溯例4

    1,问题提出 日本数学家桥本吉彦教授于1993年10月在我国山东举行的中日美三国数学教育研讨会上向与会者提出以下填数趣题: 把1,2,...,9这9个数字填入下式的九个方格中(数字不得重复),使下面 ...

  2. C#数据类型与数据库字段类型对应

    数据库 C#程序 int int32 text string bigint int64 binary System.Byte[] bit Boolean char string datetime Sy ...

  3. java nio 通道(二)

    本文章来源于我的个人博客: java nio 通道(二) 一,文件通道 文件通道总是堵塞式的,因此不能被置于非堵塞模式. FileChannel对象是线程安全的.多个进程能够在同一个实例上并发调用方法 ...

  4. 导入EXCEL 时间数据为小数 问题

    同事在做将EXCEL导入数据库功能时发现一个奇怪的问题:在EXCEL中,有一列数据明明呈现出时间格式,比如:18:35,但导到数据库中,居然一串长长的小数:0.7743055555555556,我靠, ...

  5. Sparksql 取代 Hive?

    sparksql  hive https://databricks.com/blog/2014/07/01/shark-spark-sql-hive-on-spark-and-the-future-o ...

  6. Machine Learning in Action(7) 回归算法

    按照<机器学习实战>的主线,结束有监督学习中关于分类的机器学习方法,进入回归部分.所谓回归就是数据进行曲线拟合,回归一般用来做预测,涵盖线性回归(经典最小二乘法).局部加权线性回归.岭回归 ...

  7. Android Weekly Notes Issue #252

    Android Weekly Issue #252 April 9th, 2017 Android Weekly Issue #252. 本期内容: 变化的渐变背景实现; Kotlin 1.1特性; ...

  8. Photoshop颜色通道实例

    PHOTOSHOP学到这会儿,我们不得不来学学枯燥乏味的颜色理论了,因为如果再不学,就难以学下去了.眼下我们就遇到了难点:颜色通道.前面在初识通道的时候,我已经说过:当你打开一张照片(RGB模式)的时 ...

  9. Appium基础——需要知道的

      Appium使用平台厂商提供的自动化框架: 1.ios 苹果的UIAutomation 2.android google的UIAutomator Appium底层使用厂商提供的自动化框架,就不需要 ...

  10. Java生成UUID不重复的id值

    在Java中创建UUID在网上查资料才知道在Java中,变成了UUID.创建方式也出奇简单System.out.println( java.util.UUID.randomUUID());