我记得开始接触OpenCV就是因为一个算法里面需要2维动态数组,那时候看core这部分也算是走马观花吧,随着使用的增多,对Mat这个结构越来越喜爱,也觉得有必要温故而知新,于是这次再看看Mat。

Mat最大的优势跟STL很相似,都是对内存进行动态的管理,不需要之前用户手动的管理内存,对于一些大型的开发,有时候投入的lpImage内存管理的时间甚至比关注算法实现的时间还要多,这显然是不合适的。除了有些嵌入式场合必须使用c语言,我任何时候都强烈像大家推荐Mat。

Mat这个类有两部分数据。一个是matrix header,这部分的大小是固定的,包含矩阵的大小,存储的方式,矩阵存储的地址等等。另一个部分是一个指向矩阵包含像素值的指针。

  1. Mat A, C; // creates just the header parts
  2. A = imread(argv[1], CV_LOAD_IMAGE_COLOR); // here we’ll know the method used (allocate matrix)
  3. Mat B(A); // Use the copy constructor
  4. C = A; // Assignment operator

需要注意的是,copy这样的操作只是copy了矩阵的matrix header和那个指针,而不是矩阵的本身,也就意味着两个矩阵的数据指针指向的是同一个地址,需要开发者格外注意。比如上面这段程序,A、B、C指向的是同一块数据,他们的header不同,但对于A的操作同样也影响着B、C的结果。刚刚提高了内存自动释放的问题,那么当我不再使用A的时候就把内存释放了,那时候再操作B和C岂不是很危险。不用担心,OpenCV的大神为我们已经考虑了这个问题,是在最后一个Mat不再使用的时候才会释放内存,咱们就放心用就行了。

如果想建立互不影响的Mat,是真正的复制操作,需要使用函数clone()或者copyTo()。

说到数据的存储,这一直就是一个值得关注的问题,Mat_<uchar>对应的是CV_8U,Mat_<uchar>对应的是CV_8U,Mat_<char>对应的是CV_8S,Mat_<int>对应的是CV_32S,Mat_<float>对应的是CV_32F,Mat_<double>对应的是CV_64F,对应的数据深度如下:

• CV_8U - 8-bit unsigned integers ( 0..255 )

• CV_8S - 8-bit signed integers ( -128..127 )

• CV_16U - 16-bit unsigned integers ( 0..65535 )

• CV_16S - 16-bit signed integers ( -32768..32767 )

• CV_32S - 32-bit signed integers ( -2147483648..2147483647 )

• CV_32F - 32-bit floating-point numbers ( -FLT_MAX..FLT_MAX, INF, NAN )

• CV_64F - 64-bit floating-point numbers ( -DBL_MAX..DBL_MAX, INF, NAN )

这里还需要注意一个问题,很多OpenCV的函数支持的数据深度只有8位和32位的,所以要少使用CV_64F,但是vs的编译器又会把float数据自动变成double型,有些不太爽。

还有个需要注意的问题,就是流操作符<<对于Mat的操作,仅限于Mat是2维的情况。

还有必要说一下Mat的存储是逐行的存储的。

再说说Mat的创建,方式有两种,罗列一下:1.调用create(行,列,类型)2.Mat(行,列,类型(值))。例如:

  1. // make a 7x7 complex matrix filled with 1+3j.
  2. Mat M(7,7,CV_32FC2,Scalar(1,3));
  3. // and now turn M to a 100x60 15-channel 8-bit matrix.
  4. // The old content will be deallocated
  5. M.create(100,60,CV_8UC(15));

要是想创建更高维的矩阵,要写成下面的方式

  1. // create a 100x100x100 8-bit array
  2. int sz[] = {100, 100, 100};
  3. Mat bigCube(3, sz, CV_8U, Scalar::all(0));

对于矩阵的行操作或者列操作,方式如下:(注意对列操作时要新建一个Mat,我想应该跟列地址不连续有关)

  1. // add the 5-th row, multiplied by 3 to the 3rd row
  2. M.row(3) = M.row(3) + M.row(5)*3;
  3. // now copy the 7-th column to the 1-st column
  4. // M.col(1) = M.col(7); // this will not work
  5. Mat M1 = M.col(1);
  6. M.col(7).copyTo(M1);

下面的东西就比较狂暴了,对于外来的数据,比如你从别的地方接受了一幅图片,但可以不是Mat结构的,而只有一个数据的指针,看看接下来的代码是如何应付的,重点哦,亲

  1. void process_video_frame(const unsigned char* pixels,
  2. int width, int height, int step)
  3. {
  4. Mat img(height, width, CV_8UC3, pixels, step);
  5. GaussianBlur(img, img, Size(7,7), 1.5, 1.5);
  6. }

亲,有木有很简单!!!

还有一种快速初始化数据的办法,如下:

  1. double m[3][3] = {{a, b, c}, {d, e, f}, {g, h, i}};
  2. Mat M = Mat(3, 3, CV_64F, m).inv();

也可以把原来的IplImage格式的图片直接用Mat(IplImage)的方式转成Mat结构,也可以像Matlab一样调用zeros()、ones()、eye()这样的函数进行初始化。

如果你需要提前释放数据的指针和内存,可以调用release()。

对于数据的获取,当然还是调用at<float>(3, 3)这样的格式为最佳。其他的方法我甚少尝试,就不敢介绍了。

最后要提的一点是关于Mat的表达式,这个也非常多,加减乘除,转置求逆,我怎么记得我以前介绍过呢。那就不多说啦~

 

OpenCV图像处理之 Mat 介绍的更多相关文章

  1. OpenCV图像处理篇之边缘检测算子

    OpenCV图像处理篇之边缘检测算子 转载: http://xiahouzuoxin.github.io/notes/ 3种边缘检测算子 一阶导数的梯度算子 高斯拉普拉斯算子 Canny算子 Open ...

  2. Visual Studio 控制台应用程序 同时使用OpenCV和matlab mat文件操作

    matalb具有灵活的图像处理,代码编写起来简洁而高效.而OpenCV具有很多成熟的计算机视觉算法,能够处理很多实时的识别处理等问题,而且代码运行起来效率很高.所以如何结合两者之间的优点,是让很多学术 ...

  3. 1.5快速上手OpenCV图像处理

    在上一节中,已经完成了OPENCV的配置,在本节接触几个Opencv图像处理相关的程序,看看opencv用简洁的代码能够实现哪些有趣的图像效果. 1.第一个程序:图像显示 #include<op ...

  4. 《OpenCV图像处理编程实例》

    <OpenCV图像处理编程实例>例程复现 随书代码下载:http://www.broadview.com.cn/28573 总结+遇到的issue解决: 第一章 初识OpenCV 1.VS ...

  5. 图像处理---《Mat对象 与 IplImage对象》

    图像处理---<认识 Mat对象> Mat对象 与 IplImage对象 (1)Mat对象:OpenCV2.0之后引进的图像数据结构.自动分配内存.不存在内存泄漏的问题,是面向对象的数据结 ...

  6. OpenCV图像处理学习笔记-Day1

    OpenCV图像处理学习笔记-Day1 目录 OpenCV图像处理学习笔记-Day1 第1课:图像读入.显示和保存 1. 读入图像 2. 显示图像 3. 保存图像 第2课:图像处理入门基础 1. 基本 ...

  7. Python+OpenCV图像处理(一)

    Python+OpenCV图像处理(一): 读取,写入和展示图片 调用摄像头拍照 调用摄像头录制视频 1. 读取.写入和展示图片 图像读入:cv2.imread() 使用函数cv2.imread() ...

  8. OpenCV不同类型Mat的at方法访问元素时该如何确定模板函数的typename(转)

    自从OpenCV推出了Mat后越来越像是Matlab了,使用起来方便了很多,但是,在用at方法访问Mat时,如何选用合适的typename类型来访问相应的Mat元素是个头疼的问题. 比如: int H ...

  9. Python+OpenCV图像处理(一)——读取显示一张图片

    先在此处先声明,后面学习python+opencv图像处理时均参考这位博主的博文https://blog.csdn.net/u011321546/article/category/7495016/2? ...

随机推荐

  1. ASM认证与口令文件

    ASM认证 ORACLE ASM 实例没有数据字典,所以连接ASM 实例只能通过如下三种系统权限来进行连接: SYSASM,SYSDBA,SYSOPER. 可以通过如下三种模式来连接ASM 实例:1. ...

  2. Mesos和Marathon

    libz is required for mesos to build 需要安装zlib-devel-1.2.7-17.el7.x86_64.rpm   其实跨Shell的Profile文件同步只要执 ...

  3. WPF架构分析

    1.DisptcherObject提供了线程和并发模型,实现了消息系统. 2.DependencyObject提供了更改通知,实现了绑定,样式. 3.Visual是托管API和非托管API(milco ...

  4. 物联网项目开发必读 深度分析MQTT协议优缺点

    物联网并不仅仅是一种网络,而是一个新的生态环境,它描述的本质是越来越多的使用物品通过网络连接在一起并可使用单个或者多个的终端设备对它们进行各种控制和使用—当然,工业上的物联网通常连接到的石鼓传感器或者 ...

  5. 使用EA完成数据库设计

    开始重构之后对于EA的了解也逐渐增多,今天就总结一下如何使用EA完成对数据库的设计.下边的图分别是截自机房收费系统和牛腩新闻开发的数据库,因为我第一遍写的时候是在机房合作的时候,而后建立牛腩新闻发布系 ...

  6. jquery中attr() & prop() 的区别与其实现方法

    $(function(){ $('#check').attr('checked'); // undefind ???一头雾水 }) 在jquery中 attr 本来就是用来设置或者获取属性的,可是上面 ...

  7. 非常好的LINUX学习者博客

    http://blog.csdn.net/qq_21794823/article/category/6496200

  8. algorithm-exercise

    https://github.com/billryan/algorithm-exercise Part I - Basics Basic Data Structure string: s2 = &qu ...

  9. stm32之入门知识

    一.stm32最小系统 stm32最小系统组成如下(除了stm32芯片外): 1.电源模块,3.3V电源,需要用稳压器件,有时要用感容网络产生stm32所使用的模拟电源. 2.时钟模块,有源或者无源晶 ...

  10. ICU 是一种说不出的痛啊

    USE [Nursing] GO /****** Object: StoredProcedure [dbo].[P_GetICUVitualSign] Script Date: 05/21/2015 ...