Pόlya定理-学习笔记
gi为一个为一个置换
c(g),为c(g)的轮换的数量 (循环的数量)
太监了
Pόlya定理-学习笔记的更多相关文章
- Burnside引理与Polya定理 学习笔记
原文链接www.cnblogs.com/zhouzhendong/p/Burnside-Polya.html 问题模型 有一个长度为 $n$ 的序列,序列中的每一个元素有 $m$ 种取值. 如果两个序 ...
- Lucas定理学习笔记
从这里开始 一个有趣的问题 扩展Lucas算法 一个有趣的问题 题目大意 给定$n, m, p$,求$C_{n}^{m}$除以$p$后的余数. Subtask#1 $0\leqslant m\leq ...
- Master定理学习笔记
前言 \(Master\)定理,又称主定理,用于程序的时间复杂度计算,核心思想是分治,近几年\(Noip\)常考时间复杂度的题目,都需要主定理进行运算. 前置 我们常见的程序时间复杂度有: \(O(n ...
- Matrix_tree Theorem 矩阵树定理学习笔记
Matrix_tree Theorem: 给定一个无向图, 定义矩阵A A[i][j] = - (<i, j>之间的边数) A[i][i] = 点i的度数 其生成树的个数等于 A的任意n ...
- 生成树计数 Matrix-Tree 定理 学习笔记
一直都知道要用Matrix-Tree定理来解决生成树计数问题,但是拖到今天才来学.博主数学不好也只能跟着各位大佬博客学一下它的应用以及会做题,证明实在是不会. 推荐博客: https://www.cn ...
- Ploya定理学习笔记
由于自己的作息极其不规律导致比赛被打爆了 但是有的时候状态其实还行. 关于Ploya定理其实特别有意思 这里粘一个[dalao的blog](https://blog.csdn.net/lyc16355 ...
- Polya 定理 学习笔记
群 群的定义 我们定义,对于一个集合 \(G\) 以及二元运算 \(\times\),如果满足以下四种性质,那我们就称 \((G,\times)\) 为一个群. 1. 封闭性 对于 \(a\in G, ...
- 矩阵树定理&BEST定理学习笔记
终于学到这个了,本来准备省选前学来着的? 前置知识:矩阵行列式 矩阵树定理 矩阵树定理说的大概就是这样一件事:对于一张无向图 \(G\),我们记 \(D\) 为其度数矩阵,满足 \(D_{i,i}=\ ...
- Pólya 定理学习笔记
在介绍\(Polya\) 定理前,先来介绍一下群论(大概了解一下就好): 群是满足下列要求的集合: 封闭性:即有一个操作使对于这个集合中每个元素操作完都使这个集合中的元素 结合律:即对于上面那个操作有 ...
随机推荐
- Element表单验证(2)
Element表单验证(2) 上篇讲的是async-validator的基本要素,那么,如何使用到Element中以及怎样优雅地使用,就在本篇. 上篇讲到async-validator由3大部分组成 ...
- js中charAt()与charCodeAt()区别
1. str.charAt(index); 返回指定位置的字符 字符串中第一个字符的下标是 0.如果参数 index 不在 0 与 string.length 之间,该方法将返回一个空字符串. ind ...
- 【上下界网络流 二分】bzoj2406: 矩阵
感觉考试碰到上下界网络流也还是写不来啊 Description Input 第一行两个数n.m,表示矩阵的大小. 接下来n行,每行m列,描述矩阵A. 最后一行两个数L,R. Output 第一行,输出 ...
- php 正则表达式中的 .*? 表示什么意思
我们知道我 .* 是任意字符,有的时候比较困惑在加个?什么意思. ?是非贪婪模式.*会匹配后面的一切字符,就是到结束的意思加?后就是不贪婪模式,这时要看?后边的字符是什么了,如.*?"的意思 ...
- hibernate简介以及简单配置
Hibernate简介: Hibernate是一个开源对象关联关系映射的框架,他对JDBC做了轻量级的封装,使我们可以通过面向对象的思想操作数据库. 为什么要用Hibernate: 1: 对JDBC访 ...
- 如何用纯 CSS 创作一根闪电连接线
效果预览 在线演示 按下右侧的"点击预览"按钮可以在当前页面预览,点击链接可以全屏预览. https://codepen.io/comehope/pen/RBjdzZ 可交互视频 ...
- word域代码判断奇偶插入分页符
阿拉伯数字页码判断奇偶插入分页符(PAGE表示当前页码,QUOTE 12表示插入分页符) {IF{=MOD({PAGE},2)} = 1 "{ QUOTE 12}" " ...
- paper:synthesizable finit state machine design techniques using the new systemverilog 3.0 enhancements之fsm1各种style的timing/area比较
整体说,一般还是用2段式,再加上output encodecd/default -X技巧.
- 嵌入式入门学习笔记3:[转]编译linux
摘自:https://blog.csdn.net/baidu_24256693/article/details/80115354 编译Linux是什么意思? Linux内核是Linux操作系统的核心, ...
- 原生Ajax+springBoot实现用户登录
思路:用户输入登录信息——信息传到后台——数据库查询——比较查询结果——返回登录信息(成功/失败) html页面代码: <!DOCTYPE html> <html lang=&quo ...